1,187 research outputs found

    Grocery omnichannel perishable inventories: performance measures and influencing factors

    Get PDF
    Purpose- Perishable inventory management for the grocery sector has become more challenging with extended omnichannel activities and emerging consumer expectations. This paper aims to identify and formalize key performance measures of omnichannel perishable inventory management (OCPI) and explore the influence of operational and market-related factors on these measures. Design/methodology/approach- The inductive approach of this research synthesizes three performance measures (product waste, lost sales and freshness) and four influencing factors (channel effect, demand variability, product perishability and shelf life visibility) for OCPI, through industry investigation, expert interviews and a systematic literature review. Treating OCPI as a complex adaptive system and considering its transaction costs, this paper formalizes the OCPI performance measures and their influencing factors in two statements and four propositions, which are then tested through numerical analysis with simulation. Findings- Product waste, lost sales and freshness are identified as distinctive OCPI performance measures, which are influenced by product perishability, shelf life visibility, demand variability and channel effects. The OCPI sensitivity to those influencing factors is diverse, whereas those factors are found to moderate each other's effects. Practical implications- To manage perishables more effectively, with less waste and lost sales for the business and fresher products for the consumer, omnichannel firms need to consider store and online channel requirements and strive to reduce demand variability, extend product shelf life and facilitate item-level shelf life visibility. While flexible logistics capacity and dynamic pricing can mitigate demand variability, the product shelf life extension needs modifications in product design, production, or storage conditions. OCPI executives can also increase the product shelf life visibility through advanced stock monitoring/tracking technologies (e.g. smart tags or more comprehensive barcodes), particularly for the online channel which demands fresher products. Originality/value- This paper provides a novel theoretical view on perishables in omnichannel systems. It specifies the OCPI performance, beyond typical inventory policies for cost minimization, while discussing its sensitivity to operations and market factors

    Stochastic Optimization Models for Perishable Products

    Get PDF
    For many years, researchers have focused on developing optimization models to design and manage supply chains. These models have helped companies in different industries to minimize costs, maximize performance while balancing their social and environmental impacts. There is an increasing interest in developing models which optimize supply chain decisions of perishable products. This is mainly because many of the products we use today are perishable, managing their inventory is challenging due to their short shelf life, and out-dated products become waste. Therefore, these supply chain decisions impact profitability and sustainability of companies and the quality of the environment. Perishable products wastage is inevitable when demand is not known beforehand. A number of models in the literature use simulation and probabilistic models to capture supply chain uncertainties. However, when demand distribution cannot be described using standard distributions, probabilistic models are not effective. In this case, using stochastic optimization methods is preferred over obtaining approximate inventory management policies through simulation. This dissertation proposes models to help businesses and non-prot organizations make inventory replenishment, pricing and transportation decisions that improve the performance of their system. These models focus on perishable products which either deteriorate over time or have a fixed shelf life. The demand and/or supply for these products and/or, the remaining shelf life are stochastic. Stochastic optimization models, including a two-stage stochastic mixed integer linear program, a two-stage stochastic mixed integer non linear program, and a chance constraint program are proposed to capture uncertainties. The objective is to minimize the total replenishment costs which impact prots and service rate. These models are motivated by applications in the vaccine distribution supply chain, and other supply chains used to distribute perishable products. This dissertation also focuses on developing solution algorithms to solve the proposed optimization models. The computational complexity of these models motivated the development of extensions to standard models used to solve stochastic optimization problems. These algorithms use sample average approximation (SAA) to represent uncertainty. The algorithms proposed are extensions of the stochastic Benders decomposition algorithm, the L-shaped method (LS). These extensions use Gomory mixed integer cuts, mixed-integer rounding cuts, and piecewise linear relaxation of bilinear terms. These extensions lead to the development of linear approximations of the models developed. Computational results reveal that the solution approach presented here outperforms the standard LS method. Finally, this dissertation develops case studies using real-life data from the Demographic Health Surveys in Niger and Bangladesh to build predictive models to meet requirements for various childhood immunization vaccines. The results of this study provide support tools for policymakers to design vaccine distribution networks

    Revenue Management and Demand Fulfillment: Matching Applications, Models, and Software

    Get PDF
    Recent years have seen great successes of revenue management, notably in the airline, hotel, and car rental business. Currently, an increasing number of industries, including manufacturers and retailers, are exploring ways to adopt similar concepts. Software companies are taking an active role in promoting the broadening range of applications. Also technological advances, including smart shelves and radio frequency identification (RFID), are removing many of the barriers to extended revenue management. The rapid developments in Supply Chain Planning and Revenue Management software solutions, scientific models, and industry applications have created a complex picture, which appears not yet to be well understood. It is not evident which scientific models fit which industry applications and which aspects are still missing. The relation between available software solutions and applications as well as scientific models appears equally unclear. The goal of this paper is to help overcome this confusion. To this end, we structure and review three dimensions, namely applications, models, and software. Subsequently, we relate these dimensions to each other and highlight commonalities and discrepancies. This comparison also provides a basis for identifying future research needs.Manufacturing;Revenue Management;Software;Advanced Planning Systems;Demand Fulfillment

    Constrained Joint Replenishment Problem with Refrigerated Vehicles

    Get PDF
    We study a constrained joint replenishment problem with a multi-commodity refrigerated road transport in cold chain logistics. Each truck may have multiple temperature zones, since products in full truckload shipment may have different temperature requirements. In the proposed mathematical programming model, we want to minimize the expected total cost that includes the inventory cost and the transportation cost as well as the penalty cost if temperature violation occurs subject to the full truckload constraint. Under the deterministic demand, the cycle time of each product, the temperature of each zone in each truck and the allocation plan (the number of units of each product to be shipped in each zone in each truck) are obtained from the mixed-integer nonlinear optimization model. Under the stochastic demand, we assume that the inventory is controlled using a periodic review system, and the order-up-to level is chosen to maintain the desired cycle service level of each product. In the case study of one of the largest modern grocery retailers in Thailand, our model is applied to obtain the optimal replenishment policy. Currently, the company's fleet consists of single-temperature trucks. We estimate the monetary benefit obtained by switching from a single-temperature truck to a multi-temperature truck. We also estimate the cost reduction from reducing the lead time. Finally, our model can be used to quantify the trade-off between the service level and the inventory cost to help the company choose the appropriate service levels

    A replenishment policy for a perishable inventory system based on estimated aging and retrieval behavior

    Get PDF
    So far the literature on inventory control for perishable products has mainly focused on (near-) optimal replenishment policies for a stylized environment, assuming no leadtime, no lot-sizing, stationary demand, a first in first out retrieval policy and/or product life time equal to two periods. This literature has given fundamental insight in the behavior and the complexity of inventory systems for perishable products. In practice, many grocery retailers have recently automated the inventory replenishment for non-perishable products. They recognize they may need a different replenishment logic for perishable products, which takes into account e.g. the age of the inventory in the system. Due to new information technologies like RFID, it now also becomes more economically feasible to register this type of information. This paper suggests a replenishment policy for perishable products which takes into account the age of inventories and which requires only very simple calculations. It will be shown that in an environment, which contains important features of the real-life retail environment, this new policy leads to substantial cost reductions compared with a base policy that does not take into account the age of inventories

    Minimizing food waste in grocery store operations: literature review and research agenda

    Get PDF
    Research on grocery waste in food retailing has recently attracted particular interest. Investigations in this area are relevant to address the problems of wasted resources and ethical concerns, as well as economic aspects from the retailer’s perspective. Reasons for food waste in retail are already well-studied empirically, and based on this, proposals for reduction are discussed. However, comprehensive approaches for preventing food waste in store operations using analytics and modeling methods are scarce. No work has yet systematized related research in this domain. As a result, there is neither any up-to-date literature review nor any agenda for future research. We contribute with the first structured literature review of analytics and modeling methods dealing with food waste prevention in retail store operations. This work identifies cross-cutting store-related planning areas to mitigate food waste, namely (1) assortment and shelf space planning, (2) replenishment policies, and (3) dynamic pricing policies. We introduce a common classification scheme of literature with regard to the depth of food waste integration and the characteristics of these planning problems. This builds our foundation to review analytics and modeling approaches. Current literature considers food waste mainly as a side effect in costing and often ignores product age dependent demand by customers. Furthermore, approaches are not integrated across planning areas. Future lines of research point to the most promising open questions in this field

    Optimization strategies for the integrated management of perishable supply chains: A literature review

    Get PDF
    Purpose: The main purpose of this article is to systematically review the papers published in the period 2005-2020 about the integration of production, inventory and distribution activities in perishable supply chains. Design/methodology/approach: The proposed research methodology is based on several steps. First, database and keywords are selected, with the aim to search and collect the main papers, dealing with the integration of production, inventory, distribution activities in perishable supply chains. Then, a bibliometric analysis is carried out, to detect: the main publishing sources, the chronological distribution, the most used keywords, the featured authors, about the selected papers. A five-dimension classification framework is proposed to carry out a content analysis, where the papers of the literature review are classified and discussed, according to: supply chain structure, objective, perishability type, solution approach, approach validation. Findings: Interest in the application of optimization models for integrated decision-making along perishable supply chains is strongly growing. Integrating multiple stages of the supply chain into a single framework is complex, especially when referring to perishable products. The vast majority of the problems addressed are then NP-Hard. Only a limited quantity of the selected papers aims to solve real-life case studies. There is a need for further research, which is capable of modeling and quantitatively improving existing supply chains. The potentials of Industry 4.0 are currently little explored. Originality/value: Based on the analysis of the papers published, this article outlines the current state of the art on the optimization strategies for the integrated management of perishable supply chains, which are very complex to be managed. Research trends and gaps are discussed, future challenges are presentedPeer Reviewe
    • …
    corecore