581 research outputs found

    To Coalesce or to Repel? An Analysis of MHT, JPDA, and Belief Propagation Multitarget Tracking Methods

    Full text link
    Joint probabilistic data association (JPDA) filter methods and multiple hypothesis tracking (MHT) methods are widely used for multitarget tracking (MTT). However, they are known to exhibit undesirable behavior in tracking scenarios with targets in close proximity: JPDA filter methods suffer from the track coalescence effect, i.e., the estimated tracks of targets in close proximity tend to merge and can become indistinguishable, and MHT methods suffer from an opposite effect known as track repulsion. In this paper, we review the JPDA filter and MHT methods and discuss the track coalescence and track repulsion effects. We also consider a more recent methodology for MTT that is based on the belief propagation (BP) algorithm, and we argue that BP-based MTT exhibits significantly reduced track coalescence and no track repulsion. Our theoretical arguments are confirmed by numerical results.Comment: 13 page

    Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA and association-based MeMBer

    Full text link
    Recent developments in random finite sets (RFSs) have yielded a variety of tracking methods that avoid data association. This paper derives a form of the full Bayes RFS filter and observes that data association is implicitly present, in a data structure similar to MHT. Subsequently, algorithms are obtained by approximating the distribution of associations. Two algorithms result: one nearly identical to JIPDA, and another related to the MeMBer filter. Both improve performance in challenging environments.Comment: Journal version at http://ieeexplore.ieee.org/document/7272821. Matlab code of simple implementation included with ancillary file

    A batch algorithm for estimating trajectories of point targets using expectation maximization

    Get PDF
    In this paper, we propose a strategy that is based on expectation maximization for tracking multiple point targets. The algorithm is similar to probabilistic multi-hypothesis tracking (PMHT) but does not relax the point target model assumptions. According to the point target models, a target can generate at most one measurement, and a measurement is generated by at most one target. With this model assumption, we show that the proposed algorithm can be implemented as iterations of Rauch-Tung-Striebel (RTS) smoothing for state estimation, and the loopy belief propagation method for marginal data association probabilities calculation. Using example illustrations with tracks, we compare the proposed algorithm with PMHT and joint probabilistic data association (JPDA) and show that PMHT and JPDA exhibit coalescence when there are closely moving targets whereas the proposed algorithm does not. Furthermore, extensive simulations c comparing the mean optimal subpattern assignment (MOSPA) performance of the algorithm for different scenarios averaged over several Monte Carlo iterations show that the proposed algorithm performs better than JPDA and PMHT. We also compare it to benchmarking algorithm: N-scan pruning based track-oriented multiple hypothesis tracking (TOMHT). The proposed algorithm shows a good tradeoff between computational complexity and the MOSPA performance

    Applications of information theory in filtering and sensor management

    Get PDF
    “A classical sensor tasking methodology is analyzed in the context of generating sensor schedules for monitoring resident space objects (RSOs). This approach, namely maximizing the expected Kullback-Leibler divergence in a measurement update, is evaluated from a probabilistic perspective to determine the accuracy of the conventional approach. In this investigation, a newdivergence-based approach is proposed to circumvent themyopic nature of the measure, forecasting the potential information contribution to a time of interest and leveraging the system dynamics and measurement model to do so. The forecasted objective exploits properties of a batch measurement update to frequently exhibit faster optimization times when compared to an accumulation of the conventional myopic employment. The forecasting approach additionally affords the ability to emphasize tracking performance at the point in time to which the information is mapped. The forecasted divergence is lifted into the multitarget domain and combined with a collision entropy objective. The addition of the collision consideration assists the tasking policy in avoiding scenarios in which determining the origin of a measurement is difficult, ameliorating issues when executing the sensor schedule. The properties of the divergencebased and collision entropy-based objectives are explored to determine appropriate optimization schemes that can enable their use in real-time application. It is demonstrated through a single-target tasking simulation that the forecasted measure successfully outperforms traditional approaches with regard to tracking performance at the forecasted time. This simulation is followed by a multitarget tasking scenario in which different optimization strategies are analyzed, illustrating the feasibility of the proposed tasking policy and evaluating the solution from both schedule quality and runtime perspectives”--Abstract, page iii

    Fuzzy region assignment for visual tracking

    Get PDF
    In this work we propose a new approach based on fuzzy concepts and heuristic reasoning to deal with the visual data association problem in real time, considering the particular conditions of the visual data segmented from images, and the integration of higher-level information in the tracking process such as trajectory smoothness, consistency of information, and protection against predictable interactions such as overlap/occlusion, etc. The objects' features are estimated from the segmented images using a Bayesian formulation, and the regions assigned to update the tracks are computed through a fuzzy system to integrate all the information. The algorithm is scalable, requiring linear computing resources with respect to the complexity of scenarios, and shows competitive performance with respect to other classical methods in which the number of evaluated alternatives grows exponentially with the number of objects.Research supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB and CAM MADRINET S-0505/TIC/0255.publicad

    Robust Automatic Multi-Sperm Tracking in Time-Lapse Images

    Get PDF
    Human sperm cell counting, tracking and motility analysis is of significant interest to biologists studying sperm function and to medical practitioners evaluating male infertility. Today, the prevailing method for analyzing sperm at fertility clinics and research laboratories is laborious and subjective. Namely, the number and quality of sperm are often visually appraised by technicians using a microscope. Although total sperm count and sperm concentration can be reasonably estimated when standard protocols are applied, they have little diagnostic value except in identifying pathologically extreme abnormalities. More dynamic sperm swimming parameters such as curvilinear velocity (VCL), straight-line velocity (VSL), linearity of forward progression (LIN) and amplitude of lateral head displacement (ALH) are increasingly believed to have clinical significance in predicting infertility but are impossible for a human observer to visually discern. Expensive computer-assisted semen analysis (CASA) instruments are also sometimes used but are severely encumbered by crude ad-hoc tracking algorithms which cannot track sperm in close proximity or whose paths intersect and are typically limited to analyzing video clips of < 1 sec duration.In this thesis, we present a robust automatic multi-sperm tracking algorithm that can measure dynamic sperm motility parameters over time in pre-recorded time-lapse images. This effort is informed by progress in signal processing and target tracking technologies over the last three decades. Multi-target tracking algorithms originally developed for radar, sonar and video processing have addressed similar problems in other domains. In this thesis, we demonstrate that their methodologies can be used for sperm tracking and motility analysis. To resolve sperm measurement-to-track association conflicts, we applied and evaluated three multi-target tracking algorithms: the probabilistic data association filter (PDAF), the joint probabilistic data association filter (JPDAF) and the exact nearest neighbor extension to the JPDAF (ENN-JPDAF). We validated the accuracy of our tracking and motility analysis by using simulated sperm trajectories whose ground truth tracks were perfectly known. Using samples collected from five patients at a fertility clinic, we demonstrated automatic sperm detection and tracking even during challenging multi-sperm collision events. Combined analysis, testing and simulation support the use of probabilistic data association techniques robust automatic multi-sperm tracking. This method could provide fertility specialists with new data visualizations and interpretations previously impossible with existing laboratory protocols

    Stochastic Particle Flow for Nonlinear High-Dimensional Filtering Problems

    Get PDF
    A series of novel filters for probabilistic inference that propose an alternative way of performing Bayesian updates, called particle flow filters, have been attracting recent interest. These filters provide approximate solutions to nonlinear filtering problems. They do so by defining a continuum of densities between the prior probability density and the posterior, i.e. the filtering density. Building on these methods' successes, we propose a novel filter. The new filter aims to address the shortcomings of sequential Monte Carlo methods when applied to important nonlinear high-dimensional filtering problems. The novel filter uses equally weighted samples, each of which is associated with a local solution of the Fokker-Planck equation. This hybrid of Monte Carlo and local parametric approximation gives rise to a global approximation of the filtering density of interest. We show that, when compared with state-of-the-art methods, the Gaussian-mixture implementation of the new filtering technique, which we call Stochastic Particle Flow, has utility in the context of benchmark nonlinear high-dimensional filtering problems. In addition, we extend the original particle flow filters for tackling multi-target multi-sensor tracking problems to enable a comparison with the new filter

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory
    • 

    corecore