3,365 research outputs found

    Job-shop scheduling with limited capacity buffers

    Get PDF
    In this paper we investigate job-shop problems where limited capacity buffers to store jobs in non-processing periods are present. In such a problem setting, after finishing processing on a machine, a job either directly has to be processed on the following machine or it has to be stored in a prespecified buffer. If the buffer is completely occupied the job may wait on its current machine but blocks this machine for other jobs. Besides a general buffer model, also specific configurations are considered. The aim of this paper is to find a compact representation of solutions for the job-shop problem with buffers. In contrast to the classical job-shop problem, where a solution may be given by the sequences of the jobs on the machines, now also the buffers have to be incorporated in the solution representation. In a first part, two such representations are proposed, one which is achieved by adapting the alternative graph model and a second which is based on the disjunctive graph model. In a second part, it is investigated whether the given solution representation can be simplified for specific buffer configurations. For the general buffer configuration it is shown that an incorporation of the buffers in the solution representation is necessary, whereas for specific buffer configurations possible simplifications are presented

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Comparative Analysis of Metaheuristic Approaches for Makespan Minimization for No Wait Flow Shop Scheduling Problem

    Get PDF
    This paper provides comparative analysis of various metaheuristic approaches for m-machine no wait flow shop scheduling (NWFSS) problem with makespan as an optimality criterion. NWFSS problem is NP hard and brute force method unable to find the solutions so approximate solutions are found with metaheuristic algorithms. The objective is to find out the scheduling sequence of jobs to minimize total completion time. In order to meet the objective criterion, existing metaheuristic techniques viz. Tabu Search (TS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are implemented for small and large sized problems and effectiveness of these techniques are measured with statistical metric

    An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems

    Full text link
    [EN] The mixed no-wait flowshop problem with both wait and no-wait constraints has many potential real-life applications. The problem can be regarded as a generalization of the traditional permutation flowshop and the no-wait flowshop. In this paper, we study, for the first time, this scheduling setting with makespan minimization. We first propose a mathematical model and then we design a speed-up makespan calculation procedure. By introducing a varying number of destructed jobs, a modified iterated greedy algorithm is proposed for the considered problem which consists of four components: 1) initialization solution construction; 2) destruction; 3) reconstruction; and 4) local search. To further improve the intensification and efficiency of the proposal, insertion is performed on some neighbor jobs of the best position in a sequence during the initialization, solution construction, and reconstruction phases. After calibrating parameters and components, the proposal is compared with five existing algorithms for similar problems on adapted Taillard benchmark instances. Experimental results show that the proposal always obtains the best performance among the compared methods.This work was supported in part by the National Natural Science Foundation of China under Grant 61572127 and 61272377, in part by the Key Research and Development Program in Jiangsu Province under Grant BE2015728, and in part by the Collaborative Innovation Center of Wireless Communications Technology. The work of R. Ruiz was supported in part by the Spanish Ministry of Economy and Competitiveness through the project "SCHEYARD-Optimization of Scheduling Problems in Container Yards" under Grant DPI2015-65895-R, and in part by the FEDER Funds.Wang, Y.; Li, X.; Ruiz García, R.; Sui, S. (2018). An Iterated Greedy Heuristic for Mixed No-Wait Flowshop Problems. IEEE Transactions on Cybernetics. 48(5):1553-1566. https://doi.org/10.1109/TCYB.2017.2707067S1553156648
    corecore