48,581 research outputs found

    Bayesian Gait Optimization for Bipedal Locomotion

    Get PDF
    One of the key challenges in robotic bipedal locomotion is finding gait parameters that optimize a desired performance criterion, such as speed, robustness or energy efficiency. Typically, gait optimization requires extensive robot experiments and specific expert knowledge. We propose to apply data-driven machine learning to automate and speed up the process of gait optimization. In particular, we use Bayesian optimization to efficiently find gait parameters that optimize the desired performance metric. As a proof of concept we demonstrate that Bayesian optimization is near-optimal in a classical stochastic optimal control framework. Moreover, we validate our approach to Bayesian gait optimization on a low-cost and fragile real bipedal walker and show that good walking gaits can be efficiently found by Bayesian optimization. © 2014 Springer International Publishing

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    Optimal Feedback Control Rules Sensitive to Controlled Endogenous Risk-Aversion

    Get PDF
    The objective of this paper is to correct and improve the results obtained by Van der Ploeg (1984a, 1984b) and utilized in the literature related to feedback stochastic optimal control sensitive to constant exogenous risk-aversion (Karp 1987; Whittle 1989, 1990; Chow 1993, amongst others). More realistic, the proposed approach deals with endoge- nous risks that are under the control of the decision-maker. It has strong implications on the policy decisions adopted by the decision-maker during the entire planning horizon.Controlled stochastic environment, rational decision-maker, adaptive control, optimal path, feedback optimal strategy, endogenous risk-aversion, dynamic active learning.Controlled stochastic environment, rational decision-maker, adaptive control, optimal path, feedback optimal strategy, endogenous risk-aversion, dynamic active learning.

    Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel

    Full text link
    We investigate super-resolution methods for image reconstruction from data provided by a family of scanning instruments like the Herschel observatory. To do this, we constructed a model of the instrument that faithfully reflects the physical reality, accurately taking the acquisition process into account to explain the data in a reliable manner. The inversion, ie the image reconstruction process, is based on a linear approach resulting from a quadratic regularized criterion and numerical optimization tools. The application concerns the reconstruction of maps for the SPIRE instrument of the Herschel observatory. The numerical evaluation uses simulated and real data to compare the standard tool (coaddition) and the proposed method. The inversion approach is capable to restore spatial frequencies over a bandwidth four times that possible with coaddition and thus to correctly show details invisible on standard maps. The approach is also applied to real data with significant improvement in spatial resolution.Comment: Astronomy & Astrophysic
    • 

    corecore