4,776 research outputs found

    Expert supervision of conventional control systems

    Get PDF
    The objective of this paper is to outline a general concept for the design of supervising fuzzy controllers to back up or monitor a conventzonal control system. The use of fuzzy logic in an external, hierarchacal control structure provides a systematic approach to integrate heuristics in a conventional control loop. Supervising techniques become especially interesting, when the system to be controlled is highly non-linear (parameter variation, saturation of the control surfaces etc.). By the means of two application examples it will be shown, how this method can effectively be used to improve the performance of a conventional control system. Both examples are part of an extended research project that is being carried out at Akrospatiale and E.N.S.I.C.A. in France to study the role of fuzzy control for potential applications in aircraft control systems

    Models and Techniques for Hotel Revenue Management Using a Roling Horizon

    Get PDF
    AbstractThis paper studies decision rules for accepting reservations for stays in a hotel based on deterministic and stochastic mathematical programming techniques. Booking control strategies are constructed that include ideas for nesting, booking limits and bid prices. We allow for multiple day stays. Instead of optimizing a decision period consisting of a fixed set of target booking days, we simultaneously optimize the complete range of target booking dates that are open for booking at the moment of optimization. This yields a rolling horizon of overlapping decision periods, which will conveniently capture the effects of overlapping stays.mathematical programming;Revenue Management;yield management

    Weighted Constraints in Fuzzy Optimization

    Get PDF
    Many practical optimization problems are characterized by someflexibility in the problem constraints, where this flexibility canbe exploited for additional trade-off between improving theobjective function and satisfying the constraints. Especially indecision making, this type of flexibility could lead to workablesolutions, where the goals and the constraints specified bydifferent parties involved in the decision making are traded offagainst one another and satisfied to various degrees. Fuzzy setshave proven to be a suitable representation for modeling this typeof soft constraints. Conventionally, the fuzzy optimizationproblem in such a setting is defined as the simultaneoussatisfaction of the constraints and the goals. No additionaldistinction is assumed to exist amongst the constraints and thegoals. This report proposes an extension of this model forsatisfying the problem constraints and the goals, where preferencefor different constraints and goals can be specified by thedecision-maker. The difference in the preference for theconstraints is represented by a set of associated weight factors,which influence the nature of trade-off between improving theoptimization objectives and satisfying various constraints.Simultaneous weighted satisfaction of various criteria is modeledby using the recently proposed weighted extensions of(Archimedean) fuzzy t-norms. The weighted satisfaction of theproblem constraints and goals are demonstrated by using a simplefuzzy linear programming problem. The framework, however, is moregeneral, and it can also be applied to fuzzy mathematicalprogramming problems and multi-objective fuzzy optimization.wiskundige programmering;fuzzy sets;optimalisatie

    A similarity-based cooperative co-evolutionary algorithm for dynamic interval multi-objective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic interval multi-objective optimization problems (DI-MOPs) are very common in real-world applications. However, there are few evolutionary algorithms that are suitable for tackling DI-MOPs up to date. A framework of dynamic interval multi-objective cooperative co-evolutionary optimization based on the interval similarity is presented in this paper to handle DI-MOPs. In the framework, a strategy for decomposing decision variables is first proposed, through which all the decision variables are divided into two groups according to the interval similarity between each decision variable and interval parameters. Following that, two sub-populations are utilized to cooperatively optimize decision variables in the two groups. Furthermore, two response strategies, rgb0.00,0.00,0.00i.e., a strategy based on the change intensity and a random mutation strategy, are employed to rapidly track the changing Pareto front of the optimization problem. The proposed algorithm is applied to eight benchmark optimization instances rgb0.00,0.00,0.00as well as a multi-period portfolio selection problem and compared with five state-of-the-art evolutionary algorithms. The experimental results reveal that the proposed algorithm is very competitive on most optimization instances

    A survey of fuzzy control for stabilized platforms

    Full text link
    This paper focusses on the application of fuzzy control techniques (fuzzy type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and fuzzy-PID controller) in the area of stabilized platforms. It represents an attempt to cover the basic principles and concepts of fuzzy control in stabilization and position control, with an outline of a number of recent applications used in advanced control of stabilized platform. Overall, in this survey we will make some comparisons with the classical control techniques such us PID control to demonstrate the advantages and disadvantages of the application of fuzzy control techniques

    Job Shop Planning and Scheduling for Manufacturers with Manual Operations

    Get PDF
    Job shop scheduling systems are widely employed to optimise the efficiency of machine utilisation in the manufacturing industry, by searching the most cost-effective permutation of job operations based on the cost of each operation on each compatible machine and the relations between job operations. Such systems are paralysed when the cost of operations are not predictable led by the involvement of complex manual operations. This paper proposes a new genetic algorithm-based job shop scheduling system by integrating a fuzzy learning and inference sub-system in an effort to address this limitation. In particular, the fuzzy sub-system adaptively estimates the completion time and thus cost of each manual task under different conditions based on a knowledge base which is initialised by domain experts and then constantly updated based on its built-in learning ability and adaptability. The manufacturer of Point of Sale and Point of Purchase products is taken in this paper as an example case for both theoretical discussion and experimental study. The experimental results demonstrate the promising of the proposed system in improving the efficiency of manual manufacturing operations

    Modeling and Solving Flow Shop Scheduling Problem Considering Worker Resource

    Get PDF
    In this paper, an uninterrupted hybrid flow scheduling problem is modeled under uncertainty conditions. Due to the uncertainty of processing time in workshops, fuzzy programming method has been used to control the parameters of processing time and preparation time. In the proposed model, there are several jobs that must be processed by machines and workers, respectively. The main purpose of the proposed model is to determine the correct sequence of operations and assign operations to each machine and each worker at each stage, so that the total completion time (Cmax) is minimized. Also this paper, fuzzy programming method is used for control unspecified parameter has been used from GAMS software to solve sample problems. The results of problem solving in small and medium dimensions show that with increasing uncertainty, the amount of processing time and consequently the completion time increases. Increases from the whole work. On the other hand, with the increase in the number of machines and workers in each stage due to the high efficiency of the machines, the completion time of all works has decreased. Innovations in this paper include uninterrupted hybrid flow storage scheduling with respect to fuzzy processing time and preparation time in addition to payment time. The allocation of workers and machines to jobs is another innovation of this article

    Adaptive Gain and Order Scheduling of Optimal Fractional Order PI{\lambda}D{\mu} Controllers with Radial Basis Function Neural-Network

    Get PDF
    Gain and order scheduling of fractional order (FO) PI{\lambda}D{\mu} controllers are studied in this paper considering four different classes of higher order processes. The mapping between the optimum PID/FOPID controller parameters and the reduced order process models are done using Radial Basis Function (RBF) type Artificial Neural Network (ANN). Simulation studies have been done to show the effectiveness of the RBFNN for online scheduling of such controllers with random change in set-point and process parameters.Comment: 6 pages, 12 figure
    corecore