1,888 research outputs found

    An Approach to Simultaneous Control of Trajectory and Interaction Forces in Dual-Arm Configurations

    Get PDF
    Multiple arm systems, multifingered grippers, and walking vehicles all have two common features. In each case, more than one actively coordinated articulation interacts with a passive object, thus forming one or more closed chains. For example, when two arms grasp an object simultaneously, the arms together with the object and the ground (base) form a closed chain. This induces kinematic and dynamic constraints and the resulting equations of motion are extremely nonlinear and coupled. Furthermore, the number of actuators exceeds the kinematic mobility of the chain in a typical case, which results in an underdetermined system of equations. An approach to control such constrained dynamic systems is described in this short paper. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus inputs to control the constraint or interaction forces and moments in the closed chain. A dynamic control model is derived for the closed chain that is suitable for designing a controller, in which the trajectory as well as the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. In this paper, these ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Target Point Manipulation Inside a Deformable Object

    Get PDF

    Time Scaling of Cooperative Multi-Robot Trajectories

    Get PDF
    In this paper we develop an algorithm to modify the trajectories of multiple robots in cooperative manipulation. If a given trajectory results in joint torques which exceed the admissible torque range for one or more joints, the algorithm slows down or speeds up the trajectory so as to maintain all the torques within the admissible boundary. Our trajectory modification algorithm uses the concept of time scaling developed by Hollerbach[10] for single robots. A multiple robot system in cooperative manipulation has significantly different dynamics compared to single robot dynamics. As a result, time scaling algorithm for single robots is not usable with multi-robot system. The trajectory scaling schemes described in this paper requires the use of linear programming techniques and is designed to accommodate the internal force constraints and payload distribution strategies. As the multi-robot system is usually redundantly actuated, the actuator torques may be found from the quadratic minimization which has the effect of lowering energy consumption for the trajectory. A scheme for generating a robust multi-robot trajectories when the carried load mass and inertia matrix are unknown but vary within a certain range is also described in this paper. Several examples are given to show the effectiveness of our multi-robot trajectory sealing scheme

    Energy-oriented Modeling And Control of Robotic Systems

    Get PDF
    This research focuses on the energy-oriented control of robotic systems using an ultracapacitor as the energy source. The primary objective is to simultaneously achieve the motion task objective and to increase energy efficiency through energy regeneration. To achieve this objective, three aims have been introduced and studied: brushless DC motors (BLDC) control by achieving optimum current in the motor, such that the motion task is achieved, and the energy consumption is minimized. A proof-ofconcept study to design a BLDC motor driver which has superiority compare to an off-the-shelf driver in terms of energy regeneration, and finally, the third aim is to develop a framework to study energy-oriented control in cooperative robots. The first aim is achieved by introducing an analytical solution which finds the optimal currents based on the desired torque generated by a virtual. Furthermore, it is shown that the well-known choice of a zero direct current component in the direct-quadrature frame is sub-optimal relative to our energy optimization objective. The second aim is achieved by introducing a novel BLDC motor driver, composed of three independent regenerative drives. To run the motor, the control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance, and a reduction of 15% energy consumption is achieved. v For the third aim, an impedance-based control scheme is introduced for cooperative manipulators grasping a rigid object. The position and orientation of the payload are to be maintained close to a desired trajectory, trading off tracking accuracy by low energy consumption and maintaining stability. To this end, an optimization problem is formulated using energy balance equations. The optimization finds the damping and stiffness gains of the impedance relation such that the energy consumption is minimized. Furthermore, L2 stability techniques are used to allow for time-varying damping and stiffness in the desired impedance. A numerical example is provided to demonstrate the results

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations

    Full text link

    Multi-objective particle swarm optimization for the structural design of concentric tube continuum robots for medical applications

    Get PDF
    Concentric tube robots belong to the class of continuum robotic systems whose morphology is described by continuous tangent curvature vectors. They are composed of multiple, interacting tubes nested inside one another and are characterized by their inherent flexibility. Concentric tube continuum robots equipped with tools at their distal end have high potential in minimally invasive surgery. Their morphology enables them to reach sites within the body that are inaccessible with commercial tools or that require large incisions. Further, they can be deployed through a tight lumen or follow a nonlinear path. Fundamental research has been the focus during the last years bringing them closer to the operating room. However, there remain challenges that require attention. The structural synthesis of concentric tube continuum robots is one of these challenges, as these types of robots are characterized by their large parameter space. On the one hand, this is advantageous, as they can be deployed in different patients, anatomies, or medical applications. On the other hand, the composition of the tubes and their design is not a straightforward task but one that requires intensive knowledge of anatomy and structural behavior. Prior to the utilization of such robots, the composition of tubes (i.e. the selection of design parameters and application-specific constraints) must be solved to determine a robotic design that is specifically targeted towards an application or patient. Kinematic models that describe the change in morphology and complex motion increase the complexity of this synthesis, as their mathematical description is highly nonlinear. Thus, the state of the art is concerned with the structural design of these types of robots and proposes optimization algorithms to solve for a composition of tubes for a specific patient case or application. However, existing approaches do not consider the overall parameter space, cannot handle the nonlinearity of the model, or multiple objectives that describe most medical applications and tasks. This work aims to solve these fundamental challenges by solving the parameter optimization problem by utilizing a multi-objective optimization algorithm. The main concern of this thesis is the general methodology to solve for patient- and application-specific design of concentric tube continuum robots and presents key parameters, objectives, and constraints. The proposed optimization method is based on evolutionary concepts that can handle multiple objectives, where the set of parameters is represented by a decision vector that can be of variable dimension in multidimensional space. Global optimization algorithms specifically target the constrained search space of concentric tube continuum robots and nonlinear optimization enables to handle the highly nonlinear elasticity modeling. The proposed methodology is then evaluated based on three examples that include cooperative task deployment of two robotic arms, structural stiffness optimization under the consideration of workspace constraints and external forces, and laser-induced thermal therapy in the brain using a concentric tube continuum robot. In summary, the main contributions are 1) the development of an optimization methodology that describes the key parameters, objectives, and constraints of the parameter optimization problem of concentric tube continuum robots, 2) the selection of an appropriate optimization algorithm that can handle the multidimensional search space and diversity of the optimization problem with multiple objectives, and 3) the evaluation of the proposed optimization methodology and structural synthesis based on three real applications

    Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial Robots

    Get PDF
    Ursprünglich wurden Industrieroboter hauptsächlich hinter Schutzzäunen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und füllen somit die bestehenden Automatisierungslücken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein Systemverständnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, während auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten für die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur Verfügung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen Abhängigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm für die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 173Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25 1.1 Research Domain 25 1.2 Research Niche 26 1.3 Research Structure 28 2. State of the Art and Research 31 2.1 Turning Machines and Machine Tending 31 2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31 2.1.2 Workpiece System 34 2.1.3 Machine System 36 2.1.4 Logistics System 39 2.1.5 Handling System 41 2.2 Robotics 43 2.2.1 Robot Installation Development and Application Fields 43 2.2.2 Fenceless Industrial and Collaborative Robots 48 2.2.3 Robot Grippers 55 2.3 Planning and Evaluation Methods 56 2.3.1 Planning of General and Manual Workstations 56 2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59 2.3.3 Robot Safety Planning 61 2.3.4 Economic Evaluation Methods 70 2.4 Synthesis - State of the Art and Research 71 3. Solution Approach 77 3.1 Need for Research and General Solution Approach 77 3.2 Use Case Delineation and Planning Focus 80 3.3 Economic Module – Solution Approach 86 3.4 Gripper Feasibility Module – Solution Approach 89 3.5 Rough Layout Discretization Model – Solution Approach 94 3.6 Cycle Time Estimation Module – Solution Approach 97 3.7 Collaborative Speed Estimation Module – Solution Approach 103 3.7.1 General Approach 103 3.7.2 Case 1: Quasi-static Contact with Hand 107 3.7.3 Case 2: Transient Contact with Hand 109 3.7.4 Case 3: Transient Contact with Shoulder 111 3.8 Synthesis – Solution Approach 114 4. Module Development 117 4.1 Economic Module – Module Development 117 4.1.1 General Approach 117 4.1.2 Calculation Scheme for Manual Operation 117 4.1.3 Calculation Scheme for Collaborative Robots 118 4.1.4 Calculation Scheme for Industrial Robots 120 4.2 Gripper Feasibility Module – Module Development 121 4.3 Rough Layout Discretization Module – Module Development 122 4.3.1 General Approach 122 4.3.2 Two-Dimensional Layout Pattern 123 4.3.3 Three-Dimensional Layout Pattern 125 4.4 Cycle Time Estimation Module – Module Development 126 4.4.1 General Approach 126 4.4.2 Reachability Study 127 4.4.3 Simulation Results 128 4.5 Collaborative Speed Estimation Module – Module Development 135 4.5.1 General Approach 135 4.5.2 Case 1: Quasi-static Contact with Hand 135 4.5.3 Case 2: Transient Contact with Hand 143 4.5.4 Case 3: Transient Contact with Shoulder 145 4.6 Synthesis – Module Development 149 5. Practical Verification 155 5.1 Use Case Overview 155 5.2 Gripper Feasibility 155 5.3 Layout Discretization 156 5.4 Collaborative Speed Estimation 157 5.5 Cycle Time Estimation 158 5.6 Economic Evaluation 160 5.7 Synthesis – Practical Verification 161 6. Results and Conclusions 165 6.1 Scientific Findings and Results 165 6.2 Critical Appraisal and Outlook 17
    • …
    corecore