6,352 research outputs found

    Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations

    Full text link
    We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    On the Virtual Element Method for Topology Optimization on polygonal meshes: a numerical study

    Get PDF
    It is well known that the solution of topology optimization problems may be affected both by the geometric properties of the computational mesh, which can steer the minimization process towards local (and non-physical) minima, and by the accuracy of the method employed to discretize the underlying differential problem, which may not be able to correctly capture the physics of the problem. In light of the above remarks, in this paper we consider polygonal meshes and employ the virtual element method (VEM) to solve two classes of paradigmatic topology optimization problems, one governed by nearly-incompressible and compressible linear elasticity and the other by Stokes equations. Several numerical results show the virtues of our polygonal VEM based approach with respect to more standard methods

    A finite element data assimilation method for the wave equation

    Get PDF
    We design a primal-dual stabilized finite element method for the numerical approximation of a data assimilation problem subject to the acoustic wave equation. For the forward problem, piecewise affine, continuous, finite element functions are used for the approximation in space and backward differentiation is used in time. Stabilizing terms are added on the discrete level. The design of these terms is driven by numerical stability and the stability of the continuous problem, with the objective of minimizing the computational error. Error estimates are then derived that are optimal with respect to the approximation properties of the numerical scheme and the stability properties of the continuous problem. The effects of discretizing the (smooth) domain boundary and other perturbations in data are included in the analysis

    Stabilizing non-trivial solutions of the generalized Kuramoto-Sivashinsky equation using feedback and optimal control

    Get PDF
    The problem of controlling and stabilizing solutions to the Kuramoto–Sivashinsky (KS) equation is studied in this paper. We consider a generalized form of the equation in which the effects of an electric field and dispersion are included. Both the feedback and optimal control problems are studied. We prove that we can control arbitrary non-trivial steady states of the KS equation, including travelling wave solutions, using a finite number of point actuators. The number of point actuators needed is related to the number of unstable modes of the equation. Furthermore, the proposed control methodology is shown to be robust with respect to changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of the electric field. We also study the problem of controlling solutions of coupled systems of KS equations. Possible applications to controlling thin film flows are discussed. Our rigorous results are supported by extensive numerical simulations
    corecore