1,501 research outputs found

    Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a set-membership state estimator and a zonotopic Kalman observer for discrete-time descriptor systems. Both approaches are developed in a set-based context considering system disturbances, measurement noise, and unknown inputs. This set-membership state estimation approach determines the set of consistent states with the model and measurements by constructing a parameterized intersection zonotope. Two methods to minimize the size of this intersection zonotope are provided: one inspired by Kalman filtering and the other based on solving an optimization problem involving a series of linear matrix inequalities. Additionally, we propose a zonotopic Kalman observer for discrete-time descriptor systems. Moreover, the relationship between both approaches is discussed. In particular, it is proved that the zonotopic Kalman observer in the current estimation type is equivalent to the set-membership approach. Finally, a numerical example is used to illustrate and compare the effectiveness of the proposed approaches.Peer ReviewedPostprint (author's final draft

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics

    Kalman filtering and Riccati equations for descriptor systems

    Get PDF
    Includes bibliographical references (p. 34-36).Cover title.Research supported by the Air Force Office of Scientific Research. AFOSR-88-0032 Research supported by the Army Research Office. DAAL03-86-K-0171 Research supported by the National Science Foundation. ECS-8700903 ECS-8700203 Research supported by the Office of Naval Research. USN-N00014-89-J-3153Ramine Nikoukhah, Alan S. Willsky, Bernard C. Levy

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area
    corecore