142 research outputs found

    Social-Group-Optimization based tumor evaluation tool for clinical brain MRI of Flair/diffusion-weighted modality

    Get PDF
    Brain tumor is one of the harsh diseases among human community and is usually diagnosed with medical imaging procedures. Computed-Tomography (CT) and Magnetic-Resonance-Image (MRI) are the regularly used non-invasive methods to acquire brain abnormalities for medical study. Due to its importance, a significant quantity of image assessment and decision-making procedures exist in literature. This article proposes a two-stage image assessment tool to examine brain MR images acquired using the Flair and DW modalities. The combination of the Social-Group-Optimization (SGO) and Shannon's-Entropy (SE) supported multi-thresholding is implemented to pre-processing the input images. The image post-processing includes several procedures, such as Active Contour (AC), Watershed and region-growing segmentation, to extract the tumor section. Finally, a classifier system is implemented using ANFIS to categorize the tumor under analysis into benign and malignant. Experimental investigation was executed using benchmark datasets, like ISLES and BRATS, and also clinical MR images obtained with Flair/DW modality. The outcome of this study confirms that AC offers enhanced results compared with other segmentation procedures considered in this article. The ANFIS classifier obtained an accuracy of 94.51% on the used ISLES and real clinical images. (C) 2019 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences

    A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features

    Get PDF
    Among dementia-like diseases, Alzheimer disease (AD) and vascular dementia (VD) are two of the most frequent. AD and VD may share multiple neurological symptoms that may lead to controversial diagnoses when using conventional clinical and MRI criteria. Therefore, other approaches are needed to overcome this issue. Machine learning (ML) combined with magnetic resonance imaging (MRI) has been shown to improve the diagnostic accuracy of several neurodegenerative diseases, including dementia. To this end, in this study, we investigated, first, whether different kinds of ML algorithms, combined with advanced MRI features, could be supportive in classifying VD from AD and, second, whether the developed approach might help in predicting the prevalent disease in subjects with an unclear profile of AD or VD. Three ML categories of algorithms were tested: artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS). Multiple regional metrics from resting-state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) of 60 subjects (33 AD, 27 VD) were used as input features to train the algorithms and find the best feature pattern to classify VD from AD. We then used the identified VD–AD discriminant feature pattern as input for the most performant ML algorithm to predict the disease prevalence in 15 dementia patients with a “mixed VD–AD dementia” (MXD) clinical profile using their baseline MRI data. ML predictions were compared with the diagnosis evidence from a 3-year clinical follow-up. ANFIS emerged as the most efficient algorithm in discriminating AD from VD, reaching a classification accuracy greater than 84% using a small feature pattern. Moreover, ANFIS showed improved classification accuracy when trained with a multimodal input feature data set (e.g., DTI + rs-fMRI metrics) rather than a unimodal feature data set. When applying the best discriminant pattern to the MXD group, ANFIS achieved a correct prediction rate of 77.33%. Overall, results showed that our approach has a high discriminant power to classify AD and VD profiles. Moreover, the same approach also showed potential in predicting earlier the prevalent underlying disease in dementia patients whose clinical profile is uncertain between AD and VD, therefore suggesting its usefulness in supporting physicians' diagnostic evaluations

    Toward enhancement of deep learning techniques using fuzzy logic: a survey

    Get PDF
    Deep learning has emerged recently as a type of artificial intelligence (AI) and machine learning (ML), it usually imitates the human way in gaining a particular knowledge type. Deep learning is considered an essential data science element, which comprises predictive modeling and statistics. Deep learning makes the processes of collecting, interpreting, and analyzing big data easier and faster. Deep neural networks are kind of ML models, where the non-linear processing units are layered for the purpose of extracting particular features from the inputs. Actually, the training process of similar networks is very expensive and it also depends on the used optimization method, hence optimal results may not be provided. The techniques of deep learning are also vulnerable to data noise. For these reasons, fuzzy systems are used to improve the performance of deep learning algorithms, especially in combination with neural networks. Fuzzy systems are used to improve the representation accuracy of deep learning models. This survey paper reviews some of the deep learning based fuzzy logic models and techniques that were presented and proposed in the previous studies, where fuzzy logic is used to improve deep learning performance. The approaches are divided into two categories based on how both of the samples are combined. Furthermore, the models' practicality in the actual world is revealed

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd

    Java sparrow bird sex detection through texture analysis and beak image color

    Get PDF
    Java sparrow is a member of a monomorphic group. Males and females have a physical appearance that looks the same, especially the color of their fur. Limited information regarding the characteristics and behavior of male and female Java sparrows can cause problems regarding sex determination, causing delays in normal mating. Further impact on the crossbreeding efforts of Java sparrow. This study aims to determine the sex detection process of Java sparrow through color and texture analysis of Java sparrow beak image with classification method using ANFIS and determine the level of accuracy. In this study there are 3 stages, namely preprocessing, learning stages and testing stages. The results of the Java sparrow sex detection accuracy through texture and color analysis of beak images using the ANFIS method are 90%. This shows that texture and color can be used to detect the sex of Java sparrow

    Java sparrow bird sex detection through texture analysis and beak image color

    Get PDF
    Java sparrow is a member of a monomorphic group. Males and females have a physical appearance that looks the same, especially the color of their fur. Limited information regarding the characteristics and behavior of male and female Java sparrows can cause problems regarding sex determination, causing delays in normal mating. Further impact on the crossbreeding efforts of Java sparrow. This study aims to determine the sex detection process of Java sparrow through color and texture analysis of Java sparrow beak image with classification method using ANFIS and determine the level of accuracy. In this study there are 3 stages, namely preprocessing, learning stages and testing stages. The results of the Java sparrow sex detection accuracy through texture and color analysis of beak images using the ANFIS method are 90%. This shows that texture and color can be used to detect the sex of Java sparrow

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    Neuropathy Classification of Corneal Nerve Images Using Artificial Intelligence

    Get PDF
    Nerve variations in the human cornea have been associated with alterations in the neuropathy state of a patient suffering from chronic diseases. For some diseases, such as diabetes, detection of neuropathy prior to visible symptoms is important, whereas for others, such as multiple sclerosis, early prediction of disease worsening is crucial. As current methods fail to provide early diagnosis of neuropathy, in vivo corneal confocal microscopy enables very early insight into the nerve damage by illuminating and magnifying the human cornea. This non-invasive method captures a sequence of images from the corneal sub-basal nerve plexus. Current practices of manual nerve tracing and classification impede the advancement of medical research in this domain. Since corneal nerve analysis for neuropathy is in its initial stages, there is a dire need for process automation. To address this limitation, we seek to automate the two stages of this process: nerve segmentation and neuropathy classification of images. For nerve segmentation, we compare the performance of two existing solutions on multiple datasets to select the appropriate method and proceed to the classification stage. Consequently, we approach neuropathy classification of the images through artificial intelligence using Adaptive Neuro-Fuzzy Inference System, Support Vector Machines, NaĂŻve Bayes and k-nearest neighbors. We further compare the performance of machine learning classifiers with deep learning. We ascertained that nerve segmentation using convolutional neural networks provided a significant improvement in sensitivity and false negative rate by at least 5% over the state-of-the-art software. For classification, ANFIS yielded the best classification accuracy of 93.7% compared to other classifiers. Furthermore, for this problem, machine learning approaches performed better in terms of classification accuracy than deep learning
    • …
    corecore