20,604 research outputs found

    Public entities driven robotic innovation in urban areas

    Get PDF
    Cities present new challenges and needs to satisfy and improve lifestyle for their citizens under the concept “Smart City”. In order to achieve this goal in a global manner, new technologies are required as the robotic one. But Public entities unknown the possibilities offered by this technology to get solutions to their needs. In this paper the development of the Innovative Public Procurement instruments is explained, specifically the process PDTI (Public end Users Driven Technological Innovation) as a driving force of robotic research and development and offering a list of robotic urban challenges proposed by European cities that have participated in such a process. In the next phases of the procedure, this fact will provide novel robotic solutions addressed to public demand that are an example to be followed by other Smart Cities.Peer ReviewedPostprint (author's final draft

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Teaching Vehicles to Anticipate: A Systematic Study on Probabilistic Behavior Prediction Using Large Data Sets

    Get PDF
    By observing their environment as well as other traffic participants, humans are enabled to drive road vehicles safely. Vehicle passengers, however, perceive a notable difference between non-experienced and experienced drivers. In particular, they may get the impression that the latter ones anticipate what will happen in the next few moments and consider these foresights in their driving behavior. To make the driving style of automated vehicles comparable to the one of human drivers with respect to comfort and perceived safety, the aforementioned anticipation skills need to become a built-in feature of self-driving vehicles. This article provides a systematic comparison of methods and strategies to generate this intention for self-driving cars using machine learning techniques. To implement and test these algorithms we use a large data set collected over more than 30000 km of highway driving and containing approximately 40000 real-world driving situations. We further show that it is possible to classify driving maneuvers upcoming within the next 5 s with an Area Under the ROC Curve (AUC) above 0.92 for all defined maneuver classes. This enables us to predict the lateral position with a prediction horizon of 5 s with a median lateral error of less than 0.21 m.Comment: the paper has been accepted for publication in IEEE Transcations on Intelligent Transportation Systems (T-ITS) 16 pages 13 figures 12 table
    corecore