168 research outputs found

    Partially Penalized Immersed Finite Element Methods for Elliptic Interface Problems

    Full text link
    This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the added penalty, not only these IFE methods can be proven to have the optimal convergence rate in the H1-norm provided that the exact solution has sufficient regularity, but also numerical results indicate that their convergence rates in both the H1-norm and the L2-norm do not deteriorate when the mesh becomes finer which is a shortcoming of the classic IFE methods in some situations. Trace inequalities are established for both linear and bilinear IFE functions that are not only critical for the error analysis of these new IFE methods, but also are of a great potential to be useful in error analysis for other IFE methods

    Residual-based a posteriori error estimation for immersed finite element methods

    Get PDF
    In this paper we introduce and analyze the residual-based a posteriori error estimation of the partially penalized immersed finite element method for solving elliptic interface problems. The immersed finite element method can be naturally utilized on interface-unfitted meshes. Our a posteriori error estimate is proved to be both reliable and efficient with reliability constant independent of the location of the interface. Numerical results indicate that the efficiency constant is independent of the interface location and that the error estimation is robust with respect to the coefficient contrast

    A unified immersed finite element error analysis for one-dimensional interface problems

    Full text link
    It has been noted that the traditional scaling argument cannot be directly applied to the error analysis of immersed finite elements (IFE) because, in general, the spaces on the reference element associated with the IFE spaces on different interface elements via the standard affine mapping are not the same. By analyzing a mapping from the involved Sobolev space to the IFE space, this article is able to extend the scaling argument framework to the error estimation for the approximation capability of a class of IFE spaces in one spatial dimension. As demonstrations of the versatility of this unified error analysis framework, the manuscript applies the proposed scaling argument to obtain optimal IFE error estimates for a typical first-order linear hyperbolic interface problem, a second-order elliptic interface problem, and the fourth-order Euler-Bernoulli beam interface problem, respectively
    corecore