7,532 research outputs found

    Energy-Efficient and Overhead-Aware Cooperative Communications

    Get PDF
    Due to the rapid growth of energy-hungry wireless multimedia services, telecom energy consumption is increasing at an extraordinary rate. Besides negative environmental impacts and higher energy bills for operators, it also affects user experience as improvements in battery technologies have not kept up with increasing mobile energy demands. Therefore, how to increase the energy efficiency (EE) of wireless communications has gained a lot of attention recently. Cooperative communication, where relays cooperatively retransmit the received data from the source to the destination, is seen as a promising technique to increases EE. Nevertheless, it requires more overhead than direct communication that needs to be taken into account for practical wireless cooperative networks. In order to achieve potential energy savings promised by cooperative communications in practical systems, overhead-aware cooperative relaying schemes with low overhead are imperative. For the case that not all relays can hear each other, i.e., hidden relays exist, an energy-efficient and a low-overhead cooperative relaying scheme is proposed. This scheme selects a subset of relays before data transmission, through the proactive participation of available relays using their local timers. Theoretical analysis of average EE under maximum transmission power constraint, using practical data packet length, and taking account of the overhead for obtaining channel state information (CSI), relay selection, and cooperative beamforming, is performed and a closed-form approximate expression for the optimal position of relays is derived. Furthermore, the overhead of the proposed scheme and the impact of data packet lengths on EE, are analysed. The analytical and simulation results reveal that the proposed scheme is significantly more energy-efficient than direct transmission, best relay selection, all relay selection, and a state-of-the-art existing cooperative relaying scheme. Moreover, the proposed scheme reduces the overhead and achieves higher energy savings for larger data packets. The conventional cooperative beamforming schemes rely on the feedback of CSIs of the best relays from the destination, which cause extra energy consumption and are prone to quantization errors in practical systems. In the case of clustered relays with location awareness and timer-based relay selection, where relays can overhear the transmission and know the location of each other, an energy-efficient overhead-aware cooperative relaying scheme is proposed, making CSI feedback from the destination dispensable. In order to avoid possible collisions between relay transmissions during best relays selection, a distributed mechanism for the selected relays to appropriately insert guard intervals before their transmissions is proposed. Average EE of the proposed scheme considering the related overhead is analysed. Moreover, the impact of the number of available relays, the number of selected relays and the location of relay cluster on EE is studied. The simulation results indicate that the proposed cooperative relaying scheme achieves higher EE than direct communication, best relay selection, and all relay selection for relay clusters located close to the source. Independent of the relay cluster location, the proposed scheme exhibits significantly higher EE than an existing cooperative relaying scheme. Device-to-device (D2D) communication in cellular networks that enable direct transmissions between user equipments (UEs) is seen as a promising way to improve both EE and spectral efficiency (SE). If the source UE (SUE) and the destination UE (DUE) are far away from each other or if the channel between them is too weak for direct transmission, then two-hop D2D communications, where relay UEs (RUEs) forward the SUE's data packets to the DUE, can be used. An energy- and spectral-efficient optimal adaptive forwarding strategy (OAFS) for two-hop D2D communications is proposed. In a distributed manner, the OAFS adaptively chooses between the best relay forwarding (BRF) and the cooperative relay beamforming (CRB) with the optimal number of selected RUEs, depending on which of them provides the higher instantaneous EE. In order to reduce the computational complexity of relay selection, a low-complexity sub-optimal adaptive forwarding strategy (SAFS) is proposed that selects between the BRF and the CRB with two RUEs by comparing their instantaneous EE. Theoretical analysis of the average EE and SE for the proposed adaptive forwarding strategies is performed considering maximum transmission power constraints, circuit power consumption and the overhead for the acquisition of CSI, forwarding mode selection and cooperative beamforming. The theoretical and simulation results show that the proposed OAFS and SAFS exhibit significantly higher EE and SE than the BRF, CRB, direct D2D communications and conventional cellular communications. For short to moderate SUE-to-DUE distances, SAFS is almost as energy- and spectral-efficient as OAFS

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore