5,069 research outputs found

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters

    Optimisation of Rail-road Level Crossing Closing Time in a Heterogenous Railway Traffic: Towards Safety Improvement - South African Case Study

    Get PDF
    The gravitation towards mobility-as-a service in railway transportation system can be achieved at low cost and effort using shared railway network. However, the problem with shared networks is the presence of the level crossings where railway and road traffic intersects. Thus, long waiting time is expected at the level crossings due to the increase in traffic volume and heterogeneity. Furthermore, safety and capacity can be severely compromised by long level crossing closing time. The emphasis of this study is to optimise the rail-road level crossing closing time in order to achieve improved safety and capacity in a heterogeneous railway network. It is imperative to note that rail-road level crossing system assumes the socio-technical and safety critical duality which often impedes improvement efforts. Therefore, thorough understanding of the factors with highest influence on the level crossing closing time is required. Henceforth, data analysis has been conducted on eight active rail-road level crossings found on the southern corridor of the Western Cape metro rail. The spatial, temporal and behavioural analysis was conducted to extract features with influence on the level crossing closing time. Convex optimisation with the objective to minimise the level crossing closing time is formulated taking into account identified features. Moreover, the objective function is constrained by the train's traction characteristics along the constituent segments of the rail-road level crossing, speed restriction and headway time. The results show that developed solution guarantees at most 53.2% and 62.46% reduction in the level crossing closing time for the zero and nonzero dwell time, respectively. Moreover, the correctness of the presented solution has been validated based on the time lost at the level crossing and railway traffic capacity consumption. Thus, presented solution has been proven to achieve at most 50% recovery of the time lost per train trip and at least 15% improvement in capacity under normal conditions. Additionally, 27% capacity improvement is achievable at peak times and can increase depending on the severity of the headway constraints. However, convex optimisation of the level crossing closing time still fall short in level crossing with nonzero dwell time due to the approximation of dwell time based on the anticipated rather than actual value

    Using information engineering to understand the impact of train positioning uncertainties on railway subsystems

    Get PDF
    Many studies propose new advanced railway subsystems, such as Driver Advisory System (DAS), Automatic Door Operation (ADO) and Traffic Management System (TMS), designed to improve the overall performance of current railway systems. Real time train positioning information is one of the key pieces of input data for most of these new subsystems. Many studies presenting and examining the effectiveness of such subsystems assume the availability of very accurate train positioning data in real time. However, providing and using high accuracy positioning data may not always be the most cost-effective solution, nor is it always available. The accuracy of train position information is varied, based on the technological complexity of the positioning systems and the methods that are used. In reality, different subsystems, henceforth referred to as ‘applications’, need different minimum resolutions of train positioning data to work effectively, and uncertainty or inaccuracy in this data may reduce the effectiveness of the new applications. However, the trade-off between the accuracy of the positioning data and the required effectiveness of the proposed applications is so far not clear. A framework for assessing the impact of uncertainties in train positions against application performance has been developed. The required performance of the application is assessed based on the characteristics of the railway system, consisting of the infrastructure, rolling stock and operational data. The uncertainty in the train positioning data is considered based on the characteristics of the positioning system. The framework is applied to determine the impact of the positioning uncertainty on the application’s outcome. So, in that way, the desired position resolution associated with acceptable application performance can be characterised. In this thesis, the framework described above is implemented for DAS and TMS applications to understand the influence of positioning uncertainty on their fundamental functions compared to base case with high accuracy (actual position). A DAS system is modelled and implemented with uncertainty characteristic of a Global Navigation Satellite System (GNSS). The train energy consumption and journey time are used as performance measures to evaluate the impact of these uncertainties compared to a base case. A TMS is modelled and implemented with the uncertainties of an on-board low-cost low-accuracy positioning system. The impact of positioning uncertainty on the modelled TMS is evaluated in terms of arrival punctuality for different levels of capacity consumption. The implementation of the framework for DAS and TMS applications determines the following: • which of the application functions are influenced by positioning uncertainty; • how positioning uncertainty influences the application output variables; • how the impact of positioning uncertainties can be identified, through the application output variables, whilst considering the impact of other railway uncertainties; • what is the impact of the underperforming application, due to positioning uncertainty, on the whole railway system in terms of energy, punctuality and capacity

    Adaptive Railway Traffic Control using Approximate Dynamic Programming

    Get PDF
    Railway networks around the world have become challenging to operate in recent decades, with a mixture of track layouts running several different classes of trains with varying operational speeds. This complexity has come about as a result of the sustained increase in passenger numbers where in many countries railways are now more popular than ever before as means of commuting to cities. To address operational challenges, governments and railway undertakings are encouraging development of intelligent and digital transport systems to regulate and optimise train operations in real-time to increase capacity and customer satisfaction by improved usage of existing railway infrastructure. Accordingly, this thesis presents an adaptive railway traffic control system for realtime operations based on a data-based approximate dynamic programming (ADP) approach with integrated reinforcement learning (RL). By assessing requirements and opportunities, the controller aims to reduce delays resulting from trains that entered a control area behind schedule by re-scheduling control plans in real-time at critical locations in a timely manner. The present data-based approach depends on an approximation to the value function of dynamic programming after optimisation from a specified state, which is estimated dynamically from operational experience using RL techniques. By using this approximation, ADP avoids extensive explicit evaluation of performance and so reduces the computational burden substantially. In this thesis, formulations of the approximation function and variants of the RL learning techniques used to estimate it are explored. Evaluation of this controller shows considerable improvements in delays by comparison with current industry practices

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Optimisation of automatic train protection systems.

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Distributed model predictive control strategy for constrained high-speed virtually coupled train set

    Get PDF
    Virtual Coupling (VC) is regarded as a breakthrough to the transitional train operation and control for improving the capability and flexibility in railways. It brings benefits as trains under VC are allowed to operate much closer to one another, forming a virtually coupled train set (VCTS). However, the safe and stable spacing between trains in the VCTS is a problem since there are no rigid couplers to connect them into a fixed formation, especially in high-speed scenarios. Due to the close spacing, the interference between trains becomes non-negligible as various maneuvers of the preceding train can significantly affect driving behaviors of the following train; this results in fluctuating spacing and therefore an unstable VCTS. Aiming at minimizing the interference and maintaining constantly safe spacing between trains in the VCTS, this paper presents a distributed model predictive control (DMPC) approach for solving the high-speed VCTS control problem. Particularly, the proposed control method focuses on the feasibility and stability of this problem, with considerations of the coupled constraint of safety braking distance and the individual constraints of speed limit variations and restricted traction/braking performance. To guarantee feasibility and stability, the terminal controller and invariant set of the DMPC are designed. For rigor, sufficient conditions of feasibility and stability are mathematically proved and derived. Based on the data of the Beijing-Shanghai high-speed railway line, numerical experiments are conducted to verify the correctness of derived sufficient conditions and the effectiveness of the proposed control method under interference and disturbances

    Integrated real-time disruption recovery strategies : a model for rail transit systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.Includes bibliographical references (leaves 125-126).Rail transit systems are subject to frequent disruptions caused by a variety of random disturbances, signal problems and door problems, for example. Such disruptions usually last for 10 to 20 minutes, which degrades the level of service significantly. To improve service reliability, transit agencies employ various real time control strategies, such as holding, expressing and short turning, to deal with these disruptions. The effectiveness of these control strategies relies upon the bird's-eye-view of the whole system. Unfortunately, it is difficult for human dispatchers to assess the situation and make good decisions in real time, even with the aid of advanced information technologies such as automatic vehicle location systems. This thesis focuses upon the development of a real-time disruption control model for rail transit systems during disruptions. A deterministic model to representing the rail transit system is first introduced. In the model, the passenger flow rates and running time between stations are constant but station-specific. Assuming that the disruption duration is known, a formulation is developed that makes use of real time vehicle location information and considers holding, expressing and short turning strategies to reduce the impact of the disruption. The objective is to minimize the sum of total platform waiting time and weighted in-vehicle delay. The original formulation is transformed into a linear mixed integer problem, which can be solved by any linear optimizer. The formulation is applied to a disruption scenario on a simplified system based on the Massachusetts Bay Transportation Authority Red Line. The sensitivity of different control strategies to the disruption duration assumption is investigated. The results showed that holding strategies combined with short turning strategies can reduce the weighted waiting time (the sum of platform waiting time and weighted in vehicle delay) by about 10-60%, compared with not applying any control strategies. Expressing only provided modest additional benefits. For the deterministic disruption duration assumption, sensitivity analysis showed that holding and expressing strategies are fairly robust, but the effectiveness of short turning strategies is quite sensitive to the accuracy of the disruption duration estimate. Most problem instances of the formulation can be solved in real-time with the proposed branching sequence used in the branch-and bound algorithm to solve this mixed integer problem.by Su Shen.S.M
    corecore