3 research outputs found

    Quasi-deterministic channel modeling and experimental validation in cooperative and massive MIMO deployment topologies

    Get PDF
    Das enorme Wachstum des mobilen Datenaufkommens wird zu substantiellen Veränderungen in mobilen Netzwerken führen. Neue drahtlose Funksysteme müssen alle verfügbaren Freiheitsgrade des Übertragungskanals ausnutzen um die Kapazität zu maximieren. Dies beinhaltet die Nutzung größerer Bandbreiten, getrennter Übertragungskanäle, Antennenarrays, Polarisation und Kooperation zwischen Basisstationen. Dafür benötigt die Funkindustrie Kanalmodelle, welche das wirkliche Verhalten des Übertragungskanals in all diesen Fällen abbilden. Viele aktuelle Kanalmodelle unterstützen jedoch nur einen Teil der benötigten Funktionalität und wurden nicht ausreichend durch Messungen in relevanten Ausbreitungsszenarien validiert. Es ist somit unklar, ob die Kapazitätsvorhersagen, welche mit diesen Modellen gemacht werden, realistisch sind. In der vorliegenden Arbeit wird ein neuen Kanalmodell eingeführt, welches korrekte Ergebnisse für zwei wichtige Anwendungsfälle erzeugt: Massive MIMO und Joint-Transmission (JT) Coordinated Multi-Point (CoMP). Dafür wurde das häufig verwendete WINNER Kanalmodell um neue Funktionen erweitert. Dazu zählen 3-D Ausbreitungseffekte, sphärische Wellenausbreitung, räumliche Konsistenz, die zeitliche Entwicklung von Kanälen sowie ein neues Modell für die Polarisation. Das neue Kanalmodell wurde unter dem Akronym "QuaDRiGa" (Quasi Deterministic Radio Channel Generator, dt.: quasideterministischer Funkkanalgenerator) eingeführt. Um das Modell zu validieren wurden Messungen in Dresden und Berlin durchgeführt. Die Messdaten wurden zunächst verwendet um die Modellparameter abzuleiten. Danach wurden die Messkampagnen im Modell nachgestellt um die Reproduzierbarkeit der Ergebnisse nachzuweisen. Essentielle Leistungsindikatoren wie z.B. der Pfadverlust, die Laufzeitstreuung, die Winkelstreuung, der Geometriefaktor, die MIMO Kapazität und die Dirty-Paper-Coding Kapazität wurden für beide Datensätze berechnet. Diese wurden dann miteinander sowie mit Ergebnissen aus dem Rayleigh i.i.d. Modell und dem 3GPP-3D Kanalmodell verglichen. Für die Messungen in Dresden erzeugt das neue Modell nahezu identische Ergebnisse wenn die nachsimulierten Kanäle anstatt der Messdaten für die Bestimmung der Modellparameter verwendet werden. Solch ein direkter Vergleich war bisher nicht möglich, da die vorherigen Modelle keine ausreichend langen Kanalsequenzen erzeugen können. Die Kapazitätsvorhersagen des neuen Modells sind zu über 90% korrekt. Im Vergleich dazu konnte das 3GPP-3D Model nur etwa 80% Genauigkeit aufweisen. Diese Vorhersagen konnten auch für das Messszenario in Berlin gemacht werden, wo mehrere Basisstationen zeitgleich vermessen wurden. Dadurch konnten die gegenseitigen Störungen mit in die Bewertung eingeschlossen werden. Die Ergebnisse bestätigen die generelle Annahme, dass es möglich ist den Ausbreitungskanal sequenziell für einzelne Basisstationen zu vermessen und danach Kapazitätsvorhersagen für ganze Netzwerke mit der Hilfe von Modellen zu machen. Das neue Modell erzeugt Kanalkoeffizienten welche ähnliche Eigenschaften wie Messdaten haben. Somit können neue Algorithmen in Funksystemen schneller bewertet werden, da es nun möglich ist realistische Ergebnisse in einem frühen Entwicklungsstadium zu erhalten.The tremendous growth of mobile data traffic will lead to substantial architectural changes in wireless networks. New wireless systems need to exploit all available degrees of freedom in the wireless channel such as wider bandwidth, multi-carrier operation, large antenna arrays, polarization, and cooperation between base stations, in order to maximize the performance. The wireless industry needs channel models that reproduce the true behavior of the radio channel in all these use cases. However, many state-of-the-art models only support parts of the required functionality and have not been thoroughly validated against measurements in relevant propagations scenarios. It is therefore unclear if the performance predictions made by these models are realistic. This thesis introduces a new geometry-based stochastic channel model that creates accurate results for two important use cases: massive multiple-input multiple-output (MIMO) and joint transmission (JT) coordinated multi-point (CoMP). For this, the popular WINNER channel model was extended to incorporate 3-D propagation, spherical wave propagation, spatial consistency, temporal evolution of channels, and a new model for the polarization. This model was introduced under the acronym ``QuaDRiGa'' - quasi deterministic radio channel generator. To validate the model, measurements were done in downtown Dresden, Germany, and downtown Berlin, Germany. Those were used to derive the model parameters. Then, the measurements were resimulated with the new channel model and benchmarked against the Rayleigh i.i.d. model and the 3GPP-3D channel model. Essential performance indicators such as path gain, shadow fading, delay spread, angular spreads, geometry factor, single-link capacity, and the dirty-paper coding capacity were computed from both the measured and resimulated data. In Dresden, the resimulated channels produce almost identical results as the measured channels. When using the resimulated channels to derive the model parameters, the same results can be obtained as when using the measurement data. Such a direct comparison was not possible with the previous models because they cannot produce sufficiently long sequences of channel data. The performance predictions from the new model are more than 90% accurate whereas only 80% accuracy could be achieved with the 3GPP-3D model. In Berlin, accurate performance predictions could also be made in a multi-cellular environment where the mutual interference between the base stations could be studied. This confirms that it is generally sufficient to use single-link measurements to parameterize channel models that are then used to predict the achievable performance in wireless networks. The new model can generate channel traces with similar characteristics as measured data. This might speed up the evaluation of new algorithms because it is now possible to obtain realistic performance results already in an early stage of development

    Design of static intercell interference coordination schemes for realistic lte-based cellular networks

    Get PDF
    Today, 3.5 and 4G systems including Long Term Evolution (LTE) and LTE-Advanced (LTE-A) support packet-based services and provide mobile broadband access for bandwidth-hungry applications. In this context of fast evolution, new and challenging technical issues must be e ectively addressed. The nal target is to achieve a signi cant step forward toward the improvement of the Quality of Experience (QoE). To that end, interference management has been recognized by the industry as a key enabler for cellular technologies based on OFDMA. Indeed, with a low frequency reuse factor, intercell interference (ICI) becomes a major concern since the Quality of Service (QoS) is not uniformly delivered across the network, it remarkably depends on user position. Hence, cell edge performance is an important issue in LTE and LTE-A. Intercell Interference Coordination (ICIC) encompasses strategies whose goal is to keep ICI at cell edges as low as possible. This alleviates the aforementioned situation. For this reason, the novelties presented in this Ph.D. thesis include not only developments of static ICIC mechanisms for data and control channels, but also e orts towards further improvements of the energy e ciency perspective. Based on a comprehensive review of the state of the art, a set of research opportunities were identi ed. To be precise, the need for exible performance evaluation methods and optimization frameworks for static ICIC strategies. These mechanisms are grouped in two families: the schemes that de ne constraints on the frequency domain and the ones that propose adjustments on the power levels. Thus, Soft- and Fractional Frequency Reuse (SFR and FFR, respectively) are identi ed as the base of the vast majority of static ICIC proposals. Consequently, during the rst part of this Ph.D. thesis, interesting insights into the operation of SFR and FFR were identi ed beyond well-known facts. These studies allow for the development of a novel statistical framework to evaluate the performance of these schemes in realistic deployments. As a result of the analysis, the poor performance of classic con gurations of SFR and FFR in real-world contexts is shown, and hence, the need for optimization is established. In addition, the importance of the interworking between static ICIC schemes and other network functionalities such as CSI feedback has also been identi ed. Therefore, novel CSI feedback schemes, suitable to operate in conjunction with SFR and FFR, have been developed. These mechanisms exploit the resource allocation pattern of these static ICIC techniques in order to improve the accuracy of the CSI feedback process. The second part is focused on the optimization of SFR and FFR. The use of multiobjective techniques is investigated as a tool to achieve e ective network-speci c optimization. The approach o ers interesting advantages. On the one hand, it allows for simultaneous optimization of several con icting criteria. On the other hand, the multiobjective nature results in outputs composed of several high quality (Pareto e cient) network con gurations, all of them featuring a near-optimal tradeo between the performance criteria. Multiobjective evolutionary algorithms allow employing complex mathematical structures without the need for relaxation, thus capturing accurately the system behavior in terms of ICI. The multiobjective optimization formulation of the problem aims at achieving e ective adjustment of the operational parameters of SFR and FFR both at cell level and network-wide. Moreover, the research was successfully extended to the control channels, both the PDCCH and ePDCCH. Finally, in an e ort to further improve the network energy e ciency (an aspect always considered throughout the thesis), the framework of Cell Switch O (CSO), having close connections with ICIC, is also introduced. By means of the proposed method, signi cant improvements with respect to traditional approaches, baseline con gurations, and previous proposals can be achieved. The gains are obtained in terms of energy consumption, network capacity, and cell edge performance.Actualmente los sistemas 3.5 y 4G tales como Long Term Evolution (LTE) y LTE-Advanced (LTE-A) soportan servicios basados en paquetes y proporcionan acceso de banda ancha m ovil para aplicaciones que requieren elevadas tasas de transmisi on. En este contexto de r apida evoluci on, aparecen nuevos retos t ecnicos que deben ser resueltos e cientemente. El objetivo ultimo es conseguir un salto cualitativo importante en la experiencia de usuario (QoE). Con tal n, un factor clave que ha sido reconocido en las redes celulares basadas en Orthogonal Frequency- Division Multiple Access (OFDMA) es la gesti on de interferencias. De hecho, la utilizaci on de un factor de reuso bajo permite una elevada e ciencia espectral pero a costa de una distribuci on de la calidad de servicio (QoS) que no es uniforme en la red, depende de la posici on del usuario. Por lo tanto, el rendimiento en los l mites de la celda se ve muy penalizado y es un problema importante a resolver en LTE y LTE-A. La coordinaci on de interferencias entre celdas (ICIC, del ingl es Intercell Interfe- rence Coordination) engloba las estrategias cuyo objetivo es mantener la interferencia intercelular (ICI) lo m as baja posible en los bordes de celda. Esto permite aliviar la situaci on antes mencionada. La contribuci on presentada en esta tesis doctoral incluye el dise~no de nuevos mecanismos de ICIC est atica para los canales de datos y control, as como tambi en mejoras desde el punto de vista de e ciencia energ etica. A partir de una revisi on completa del estado del arte, se identi caron una serie de retos abiertos que requer an esfuerzos de investigaci on. En concreto, la necesidad de m etodos de evaluaci on exibles y marcos de optimizaci on de las estrategias de ICIC est aticas. Estos mecanismos se agrupan en dos familias: los esquemas que de nen restricciones sobre el dominio de la frecuencia y los que proponen ajustes en los niveles de potencia. Es decir, la base de la gran mayor a de propuestas ICIC est aticas son la reutilizaci on de frecuencias de tipo soft y fraccional (SFR y FFR, respectivamente). De este modo, durante la primera parte de esta tesis doctoral, se han estudiado los aspectos m as importantes del funcionamiento de SFR y FFR, haciendo especial enfasis en las conclusiones que van m as all a de las bien conocidas. Ello ha permitido introducir un nuevo marco estad stico para evaluar el funcionamiento de estos sistemas en condiciones de despliegue reales. Como resultado de estos an alisis, se muestra el pobre desempe~no de SFR y FFR en despliegues reales cuando funcionan con sus con guraciones cl asicas y se establece la necesidad de optimizaci on. Tambi en se pone de mani esto la importancia del funcionamiento conjunto entre esquemas ICIC est aticos y otras funcionalidades de la red radio, tales como la informaci on que env an los usuarios sobre el estado de su canal downlink (feedback del CSI, del ingl es Channel State Information). De este modo, se han propuesto diferentes esquemas de feedback apropiados para trabajar conjuntamente con SFR y FFR. Estos mecanismos explotan el patr on de asignaci on de recursos que se utiliza en ICIC est atico para mejorar la precisi on del proceso. La segunda parte se centra en la optimizaci on de SFR y FFR. Se ha investigado el uso de t ecnicas multiobjetivo como herramienta para lograr una optimizaci on e caz, que es espec ca para cada red. El enfoque ofrece ventajas interesantes, por un lado, se permite la optimizaci on simult anea de varios criterios contradictorios. Por otro lado, la naturaleza multiobjetivo implica obtener como resultado con guraciones de red de elevada calidad (Pareto e cientes), todas ellas con un equilibrio casi- optimo entre las diferentes m etricas de rendimiento. Los algoritmos evolucionarios multiobjetivo permiten la utilizaci on de estructuras matem aticas complejas sin necesidad de relajar el problema, de este modo capturan adecuadamente su comportamiento en t erminos de ICI. La formulaci on multiobjetivo consigue un ajuste efectivo de los par ametros operacionales de SFR y FFR, tanto a nivel de celda como a nivel de red. Adem as, la investigaci on se extiende con resultados satisfactorios a los canales de control, PDCCH y ePDCCH. Finalmente, en un esfuerzo por mejorar la e ciencia energ etica de la red (un aspecto siempre considerado a lo largo de la tesis), se introduce en el an alisis global el apagado inteligente de celdas, estrategia con estrechos v nculos con ICIC. A trav es del m etodo propuesto, se obtienen mejoras signi cativas con respecto a los enfoques tradicionales y propuestas previas. Las ganancias se obtienen en t erminos de consumo energ etico, capacidad de la red, y rendimiento en el l mite de las celdas.Actualment els sistemes 3.5 i 4G tals com Long Term Evolution (LTE) i LTE- Advanced (LTE-A) suporten serveis basats en paquets i proporcionen acc es de banda ampla m obil per a aplicacions que requereixen elevades taxes de transmissi o. En aquest context de r apida evoluci o, apareixen nous reptes t ecnics que han de ser resolts e cientment. L'objectiu ultim es aconseguir un salt qualitatiu important en l'experi encia d'usuari (QoE). Amb tal , un factor clau que ha estat reconegut a les xarxes cel lulars basades en Orthogonal Frequency-Division Multiple Access (OFDMA) es la gesti o d'interfer encies. De fet, la utilizaci o d'un factor de re us baix permet una elevada e ci encia espectral per o a costa d'una distribuci o de la qualitat de servei (QoS) que no es uniforme a la xarxa, dep en de la posici o de l'usuari. Per tant, el rendiment en els l mits de la cel la es veu molt penalitzat i es un problema important a resoldre en LTE i LTE-A. La coordinaci o d'interfer encies entre cel les (ICIC, de l'angl es Intercell Interfe- rence Coordination) engloba les estrat egies que tenen com a objectiu mantenir la interfer encia intercel lular (ICI) el m es baixa possible en les vores de la cel la. Aix o permet alleujar la situaci o abans esmentada. La contribuci o presentada en aquesta tesi doctoral inclou el disseny de nous mecanismes de ICIC est atica per als canals de dades i control, aix com tamb e millores des del punt de vista d'e ci encia energ etica. A partir d'una revisi o completa de l'estat de l'art, es van identi car una s erie de reptes oberts que requerien esfor cos de recerca. En concret, la necessitat de m etodes d'avaluaci o exibles i marcs d'optimitzaci o de les estrat egies de ICIC est atiques. Aquests mecanismes s'agrupen en dues fam lies: els esquemes que de neixen restriccions sobre el domini de la freq u encia i els que proposen ajustos en els nivells de pot encia. Es a dir, la base de la gran majoria de propostes ICIC est atiques s on la reutilitzaci o de freq u encies de tipus soft i fraccional (SFR i FFR, respectivament). D'aquesta manera, durant la primera part d'aquesta tesi doctoral, s'han estudiat els aspectes m es importants del funcionament de SFR i FFR, fent especial emfasi en les conclusions que van m es enll a de les ben conegudes. Aix o ha perm es introduir un nou marc estad stic per avaluar el funcionament d'aquests sistemes en condicions de desplegament reals. Com a resultat d'aquestes an alisis, es mostra el pobre acompliment de SFR i FFR en desplegaments reals quan funcionen amb les seves con guracions cl assiques i s'estableix la necessitat d'optimitzaci o. Tamb e es posa de manifest la import ancia del funcionament conjunt entre esquemes ICIC est atics i altres funcionalitats de la xarxa radio, tals com la informaci o que envien els usuaris sobre l'estat del seu canal downlink (feedback del CSI, de l'angl es Channel State Information). D'aquesta manera, s'han proposat diferents esquemes de feedback apropiats per treballar conjuntament amb SFR i FFR. Aquests mecanismes exploten el patr o d'assignaci o de recursos que s'utilitza en ICIC est atic per millorar la precisi o del proc es. La segona part se centra en l'optimitzaci o de SFR i FFR. S'ha investigat l' us de t ecniques multiobjectiu com a eina per aconseguir una optimitzaci o e ca c, que es espec ca per a cada xarxa. L'enfocament ofereix avantatges interessants, d'una banda, es permet l'optimitzaci o simult ania de diversos criteris contradictoris. D'altra banda, la naturalesa multiobjectiu implica obtenir com resultat con guracions de xarxa d'elevada qualitat (Pareto e cients), totes elles amb un equilibri gaireb e optim entre les diferents m etriques de rendiment. Els algorismes evolucionaris multiobjectiu permeten la utilitzaci o d'estructures matem atiques complexes sense necessitat de relaxar el problema, d'aquesta manera capturen adequadament el seu comportament en termes de ICI. La formulaci o multiobjectiu aconsegueix un ajust efectiu dels par ametres operacionals de SFR i FFR, tant a nivell de cel la com a nivell de xarxa. A m es, la recerca s'est en amb resultats satisfactoris als canals de control, PDCCH i ePDCCH. Finalment, en un esfor c per millorar l'e ci encia energ etica de la xarxa (un aspecte sempre considerat al llarg de la tesi), s'introdueix en l'an alisi global l'apagat intel ligent de cel les, estrat egia amb estrets vincles amb ICIC. Mitjan cant el m etode proposat, s'obtenen millores signi catives pel que fa als enfocaments tradicionals i propostes pr evies. Els guanys s'obtenen en termes de consum energ etic, capacitat de la xarxa, i rendiment en el l mit de les cel les
    corecore