891 research outputs found

    Supply modelling of rail networks : toward a routing/makeup model

    Get PDF
    Includes bibliographical references.Supported in part by the U.S. Department of Transportation, Transportation Advanced Research Program (TARP) DOT-TSC-1058by Arjang A. Assad

    Homeostatic control : the utilitycustomer marketplace for electric power

    Get PDF
    A load management system is proposed in which the electric utility customer controls his on-site power demand to coincide with the lowest possible cost of power generation. Called Homeostatic Control, this method is founded on feedback between the customer and the utility and on customer independence. The utility has no control beyond the customer's meter. Computers located at the customer's site are continuously fed data on weather conditions, utility generating costs, and demand requirements for space conditioning, lighting, and appliances. The customer then directs the computer to schedule and control the power allotted for these functions. On-site generation by the customer can be incorporated in the system. It is argued that homeostatic control is technically feasible, that the level of control equipment sophistication can be adapted to the benefits received by the customer, that such a system would encourage the use of customer-site energy storage and energy conservation equipment, and that it represents a realistic method for allowing the customer to decide how he will use electric power during an era of increasing costs for power generation. (LCL

    Three essays on delay management for passenger rail services

    Full text link
    Railways are confronted with several problems in their daily business. One of these operational problems is delay management. Therein the question of whether a train should wait for a delayed feeder train or depart on time is addressed. Answering this question is not trivial since the determined wait-depart decision may cause serious consequences. While the majority of models in the literature usually take the decision by aiming for minimizing disturbances in the operating procedure, delay management focuses on the impact for passengers. By minimizing passenger delay, delay management differs from the other problems on the operational level and leads to different recommendations for dispatchers. This thesis puts the scope on railway delay management and its impacts for passengers. It consists of three essays: a literature review on delay management and two models that advance the research in this field. In the literature review, a new classification scheme for operational problems in railways is developed. Literature in delay management and influence from delay management on neighboring areas are discussed. The second essay proposes a stochastic dynamic programming approach taking the dynamic nature of delays and uncertainty into account. Evaluating potential recourse actions derives policies for taking dispatching decisions. The third essay considers the capacity of trains in the decision making process. Rerouting of passengers for broken connections is further assumed and spill effects for passenger streams are measured. A nonlinear model is developed and solved by linearizing it exactly and heuristically. Both approaches, from the second and third essay, are evaluated in a numerical study on real-world data from the German railway provider Deutsche Bahn. Germany possesses a rather complex and massive railway network that will require further decision support and future research

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    A Methodology to Identify Stranded Generation Facilities and Estimate Stranded Costs for Louisiana\u27s Electric Utility Industry.

    Get PDF
    The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous transition problems. . One significant transition problem for federal and state regulators rests with determining a utility\u27s stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as Top-Down and Bottom-Up. The Top-Down approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The Bottom-Up approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a Bottom-Up quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific to each set of parameters, lead to the identification of stranded generation facilities. Stranded costs of non-dispatched and uneconomically dispatched generation facilities can then be estimated to indicate, arguably, the largest portion of restructuring transition costs as the industry is transformed from its present monopolistic structure to a competitive one
    corecore