17,299 research outputs found

    Optimal discovery with probabilistic expert advice

    Full text link
    peer reviewedMotivated by issues of security analysis for power systems, we analyze a new problem, called optimal discovery with probabilistic expert advice. We address it with an algorithm based on the optimistic paradigm and the Good-Turingmissing mass estimator. We show that this strategy attains the optimal discovery rate in a macroscopic limit sense, under some assumptions on the probabilistic experts. We also provide numerical experiments suggesting that this optimal behavior may still hold under weaker assumptions

    Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet

    Full text link
    Various optimality properties of universal sequence predictors based on Bayes-mixtures in general, and Solomonoff's prediction scheme in particular, will be studied. The probability of observing xtx_t at time tt, given past observations x1...xt−1x_1...x_{t-1} can be computed with the chain rule if the true generating distribution μ\mu of the sequences x1x2x3...x_1x_2x_3... is known. If μ\mu is unknown, but known to belong to a countable or continuous class \M one can base ones prediction on the Bayes-mixture ξ\xi defined as a wνw_\nu-weighted sum or integral of distributions \nu\in\M. The cumulative expected loss of the Bayes-optimal universal prediction scheme based on ξ\xi is shown to be close to the loss of the Bayes-optimal, but infeasible prediction scheme based on μ\mu. We show that the bounds are tight and that no other predictor can lead to significantly smaller bounds. Furthermore, for various performance measures, we show Pareto-optimality of ξ\xi and give an Occam's razor argument that the choice wν∼2−K(ν)w_\nu\sim 2^{-K(\nu)} for the weights is optimal, where K(ν)K(\nu) is the length of the shortest program describing ν\nu. The results are applied to games of chance, defined as a sequence of bets, observations, and rewards. The prediction schemes (and bounds) are compared to the popular predictors based on expert advice. Extensions to infinite alphabets, partial, delayed and probabilistic prediction, classification, and more active systems are briefly discussed.Comment: 34 page

    Bell nonlocality and Bayesian game theory

    Full text link
    We discuss a connection between Bell nonlocality and Bayesian games. This link offers interesting perspectives for Bayesian games, namely to allow the players to receive advice in the form of nonlocal correlations, for instance using entangled quantum particles or more general no-signaling boxes. The possibility of having such 'nonlocal advice' will lead to novel joint strategies, impossible to achieve in the classical setting. This implies that quantum resources, or more general no-signaling resources, offer a genuine advantage over classical ones. Moreover, some of these strategies can represent equilibrium points, leading to the notion of quantum/no-signaling Nash equilibrium. Finally we describe new types of question in the study of nonlocality, namely the consideration of non-local advantage when there is a set of Bell expressions.Comment: 7 pages, 3 figure

    Structuring Decisions Under Deep Uncertainty

    Get PDF
    Innovative research on decision making under ‘deep uncertainty’ is underway in applied fields such as engineering and operational research, largely outside the view of normative theorists grounded in decision theory. Applied methods and tools for decision support under deep uncertainty go beyond standard decision theory in the attention that they give to the structuring of decisions. Decision structuring is an important part of a broader philosophy of managing uncertainty in decision making, and normative decision theorists can both learn from, and contribute to, the growing deep uncertainty decision support literature
    • …
    corecore