14 research outputs found

    Randomized pick-freeze for sparse Sobol indices estimation in high dimension

    Get PDF
    This article investigates a new procedure to estimate the influence of each variable of a given function defined on a high-dimensional space. More precisely, we are concerned with describing a function of a large number pp of parameters that depends only on a small number ss of them. Our proposed method is an unconstrained 1\ell_{1}-minimization based on the Sobol's method. We prove that, with only O(slogp)\mathcal O(s\log p) evaluations of ff, one can find which are the relevant parameters

    Graph-based techniques for compression and reconstruction of sparse sources

    Get PDF
    The main goal of this thesis is to develop lossless compression schemes for analog and binary sources. All the considered compression schemes have as common feature that the encoder can be represented by a graph, so they can be studied employing tools from modern coding theory. In particular, this thesis is focused on two compression problems: the group testing and the noiseless compressed sensing problems. Although both problems may seem unrelated, in the thesis they are shown to be very close. Furthermore, group testing has the same mathematical formulation as non-linear binary source compression schemes that use the OR operator. In this thesis, the similarities between these problems are exploited. The group testing problem is aimed at identifying the defective subjects of a population with as few tests as possible. Group testing schemes can be divided into two groups: adaptive and non-adaptive group testing schemes. The former schemes generate tests sequentially and exploit the partial decoding results to attempt to reduce the overall number of tests required to label all members of the population, whereas non-adaptive schemes perform all the test in parallel and attempt to label as many subjects as possible. Our contributions to the group testing problem are both theoretical and practical. We propose a novel adaptive scheme aimed to efficiently perform the testing process. Furthermore, we develop tools to predict the performance of both adaptive and non-adaptive schemes when the number of subjects to be tested is large. These tools allow to characterize the performance of adaptive and non-adaptive group testing schemes without simulating them. The goal of the noiseless compressed sensing problem is to retrieve a signal from its lineal projection version in a lower-dimensional space. This can be done only whenever the amount of null components of the original signal is large enough. Compressed sensing deals with the design of sampling schemes and reconstruction algorithms that manage to reconstruct the original signal vector with as few samples as possible. In this thesis we pose the compressed sensing problem within a probabilistic framework, as opposed to the classical compression sensing formulation. Recent results in the state of the art show that this approach is more efficient than the classical one. Our contributions to noiseless compressed sensing are both theoretical and practical. We deduce a necessary and sufficient matrix design condition to guarantee that the reconstruction is lossless. Regarding the design of practical schemes, we propose two novel reconstruction algorithms based on message passing over the sparse representation of the matrix, one of them with very low computational complexity.El objetivo principal de la tesis es el desarrollo de esquemas de compresión sin pérdidas para fuentes analógicas y binarias. Los esquemas analizados tienen en común la representación del compresor mediante un grafo; esto ha permitido emplear en su estudio las herramientas de codificación modernas. Más concretamente la tesis estudia dos problemas de compresión en particular: el diseño de experimentos de testeo comprimido de poblaciones (de sangre, de presencia de elementos contaminantes, secuenciado de ADN, etcétera) y el muestreo comprimido de señales reales en ausencia de ruido. A pesar de que a primera vista parezcan problemas totalmente diferentes, en la tesis mostramos que están muy relacionados. Adicionalmente, el problema de testeo comprimido de poblaciones tiene una formulación matemática idéntica a los códigos de compresión binarios no lineales basados en puertas OR. En la tesis se explotan las similitudes entre todos estos problemas. Existen dos aproximaciones al testeo de poblaciones: el testeo adaptativo y el no adaptativo. El primero realiza los test de forma secuencial y explota los resultados parciales de estos para intentar reducir el número total de test necesarios, mientras que el segundo hace todos los test en bloque e intenta extraer el máximo de datos posibles de los test. Nuestras contribuciones al problema de testeo comprimido han sido tanto teóricas como prácticas. Hemos propuesto un nuevo esquema adaptativo para realizar eficientemente el proceso de testeo. Además hemos desarrollado herramientas que permiten predecir el comportamiento tanto de los esquemas adaptativos como de los esquemas no adaptativos cuando el número de sujetos a testear es elevado. Estas herramientas permiten anticipar las prestaciones de los esquemas de testeo sin necesidad de simularlos. El objetivo del muestreo comprimido es recuperar una señal a partir de su proyección lineal en un espacio de menor dimensión. Esto sólo es posible si se asume que la señal original tiene muchas componentes que son cero. El problema versa sobre el diseño de matrices y algoritmos de reconstrucción que permitan implementar esquemas de muestreo y reconstrucción con un número mínimo de muestras. A diferencia de la formulación clásica de muestreo comprimido, en esta tesis se ha empleado un modelado probabilístico de la señal. Referencias recientes en la literatura demuestran que este enfoque permite conseguir esquemas de compresión y descompresión más eficientes. Nuestras contribuciones en el campo de muestreo comprimido de fuentes analógicas dispersas han sido también teóricas y prácticas. Por un lado, la deducción de la condición necesaria y suficiente que debe garantizar la matriz de muestreo para garantizar que se puede reconstruir unívocamente la secuencia de fuente. Por otro lado, hemos propuesto dos algoritmos, uno de ellos de baja complejidad computacional, que permiten reconstruir la señal original basados en paso de mensajes entre los nodos de la representación gráfica de la matriz de proyección.Postprint (published version

    Compressive Sensing and Recovery of Structured Sparse Signals

    Get PDF
    In the recent years, numerous disciplines including telecommunications, medical imaging, computational biology, and neuroscience benefited from increasing applications of high dimensional datasets. This calls for efficient ways of data capturing and data processing. Compressive sensing (CS), which is introduced as an efficient sampling (data capturing) method, is addressing this need. It is well-known that the signals, which belong to an ambient high-dimensional space, have much smaller dimensionality in an appropriate domain. CS taps into this principle and dramatically reduces the number of samples that is required to be captured to avoid any distortion in the information content of the data. This reduction in the required number of samples enables many new applications that were previously infeasible using classical sampling techniques. Most CS-based approaches take advantage of the inherent low-dimensionality in many datasets. They try to determine a sparse representation of the data, in an appropriately chosen basis using only a few significant elements. These approaches make no extra assumptions regarding possible relationships among the significant elements of that basis. In this dissertation, different ways of incorporating the knowledge about such relationships are integrated into the data sampling and the processing schemes. We first consider the recovery of temporally correlated sparse signals and show that using the time correlation model. The recovery performance can be significantly improved. Next, we modify the sampling process of sparse signals to incorporate the signal structure in a more efficient way. In the image processing application, we show that exploiting the structure information in both signal sampling and signal recovery improves the efficiency of the algorithm. In addition, we show that region-of-interest information can be included in the CS sampling and recovery steps to provide a much better quality for the region-of-interest area compared the rest of the image or video. In spectrum sensing applications, CS can dramatically improve the sensing efficiency by facilitating the coordination among spectrum sensors. A cluster-based spectrum sensing with coordination among spectrum sensors is proposed for geographically disperse cognitive radio networks. Further, CS has been exploited in this problem for simultaneous sensing and localization. Having access to this information dramatically facilitates the implementation of advanced communication technologies as required by 5G communication networks

    Optimal Designs for Lasso and Dantzig Selector Using Expander Codes

    No full text

    Sparsity optimization and RRSP-based theory far l-bit compressive sensing

    Get PDF
    Due to the fact that only a few significant components can capture the key information of the signal, acquiring a sparse representation of the signal can be interpreted as finding a sparsest solution to an underdetermined system of linear equations. Theoretical results obtained from studying the sparsest solution to a system of linear equations provide the foundation for many practical problems in signal and image processing, sample theory, statistical and machine learning, and error correction. The first contribution of this thesis is the development of sufficient conditions for the uniqueness of solutions of the partial l0_0-minimization, where only a part of the solution is sparse. In particular, l0_0-minimization is a special case of the partial l0_0-minimization. To study and develop uniqueness conditions for the partial sparsest solution, some concepts, such as lp_p-induced quasi-norm, maximal scaled spark and maximal scaled mutual coherence, are introduced. The main contribution of this thesis is the development of a framework for l-bit compressive sensing and the restricted range space property based support recovery theories. The l-bit compressive sensing is an extreme case of compressive sensing. We show that such a l-bit framework can be reformulated equivalently as an l0_0-minimization with linear equality and inequality constraints. We establish a decoding method, so-called l-bit basis pursuit, to possibly attack this l-bit l0_0-minimization problem. The support recovery theories via l-bit basis pursuit have been developed through the restricted range space property of transposed sensing matrices. In the last part of this thesis, we study the numerical performance of l-bit basis pursuit. We present simulation results to demonstrate that l-bit basis pursuit achieves support recovery, approximate sparse recovery and cardinality recovery with Gaussian matrices and Bernoulli matrices. It is not necessary to require that the sensing matrix be underdetermined due to the single-bit per measurement assumption. Furthermore, we introduce the truncated l-bit measurements method and the reweighted l-bit l1_1-minimization method to further enhance the numerical performance of l-bit basis pursuit

    Compressive Acquisition and Processing of Sparse Analog Signals

    Get PDF
    Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), aim at alleviating some of these problems. In this thesis, we look into the ways the application of a compressive measurement kernel impacts the signal recovery performance and investigate methods to infer the current signal complexity from the compressive observations. We then study a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals in spectral, angular and spatial domains.Seit dem Aufkommen der ersten digitalen Verarbeitungseinheiten hat die Bedeutung der digitalen Signalverarbeitung stetig zugenommen. Heutzutage findet die meiste Signalverarbeitung im digitalen Bereich statt, was erfordert, dass analoge Signale zuerst abgetastet und digitalisiert werden, bevor relevante Daten daraus extrahiert werden können. Jahrzehntelang hat die herkömmliche äquidistante Abtastung, die durch das Nyquist-Abtasttheorem bestimmt wird, zu diesem Zweck ein nahezu universelles Mittel bereitgestellt. Der kürzliche explosive Anstieg der Anforderungen an die Datenerfassung, -speicherung und -verarbeitung hat jedoch die Fähigkeiten herkömmlicher Erfassungssysteme in vielen Anwendungsbereichen an ihre Grenzen gebracht. Durch eine alternative Sichtweise auf den Signalerfassungsprozess können Ideen aus der sparse Signalverarbeitung und einer ihrer Hauptanwendungsgebiete, Compressed Sensing (CS), dazu beitragen, einige dieser Probleme zu mindern. Basierend auf der Annahme, dass der Informationsgehalt eines Signals oft viel geringer ist als was von der nativen Repräsentation vorgegeben, stellt CS ein alternatives Konzept für die Erfassung und Verarbeitung bereit, das versucht, die Abtastrate unter Beibehaltung des Signalinformationsgehalts zu reduzieren. In dieser Arbeit untersuchen wir einige der Grundlagen des endlichdimensionalen CSFrameworks und seine Verbindung mit Sub-Nyquist Abtastung und Verarbeitung von sparsen analogen Signalen. Obwohl es seit mehr als einem Jahrzehnt ein Schwerpunkt aktiver Forschung ist, gibt es noch erhebliche Lücken beim Verständnis der Auswirkungen von komprimierenden Ansätzen auf die Signalwiedergewinnung und die Verarbeitungsleistung, insbesondere bei rauschbehafteten Umgebungen und in Bezug auf praktische Messaufgaben. In dieser Dissertation untersuchen wir, wie sich die Anwendung eines komprimierenden Messkerns auf die Signal- und Rauschcharakteristiken auf die Signalrückgewinnungsleistung auswirkt. Wir erforschen auch Methoden, um die aktuelle Signal-Sparsity-Order aus den komprimierten Messungen abzuleiten, ohne auf die Nyquist-Raten-Verarbeitung zurückzugreifen, und zeigen den Vorteil, den sie für den Wiederherstellungsprozess bietet. Nachdem gehen wir zu einer speziellen Anwendung, nämlich der Sub-Nyquist-Abtastung und Verarbeitung von sparsen analogen Multibandsignalen. Innerhalb des Sub-Nyquist-Abtastung untersuchen wir drei verschiedene Multiband-Szenarien, die Multiband-Sensing in der spektralen, Winkel und räumlichen-Domäne einbeziehen.Since the advent of the first digital processing units, the importance of digital signal processing has been steadily rising. Today, most signal processing happens in the digital domain, requiring that analog signals be first sampled and digitized before any relevant data can be extracted from them. For decades, conventional uniform sampling that is governed by the Nyquist sampling theorem has provided an almost universal means to this end. The recent explosion of the demands for data acquisition, storage and processing, however, has pushed the capabilities of conventional acquisition systems to their limits in many application areas. By offering an alternative view on the signal acquisition process, ideas from sparse signal processing and one of its main beneficiaries compressed sensing (CS), have the potential to assist alleviating some of these problems. Building on the premise that the signal information rate is often much lower than what is dictated by its native representation, CS provides an alternative acquisition and processing framework that attempts to reduce the sampling rate while preserving the information content of the signal. In this thesis, we explore some of the basic foundations of the finite-dimensional CS framework and its connection to sub-Nyquist sampling and processing of sparse continuous analog signals with application to multiband sensing. Despite being a focus of active research for over a decade, there still remain signi_cant gaps in understanding the implications that compressive approaches have on the signal recovery and processing performance, especially against noisy settings and in relation to practical sampling problems. This dissertation aims at filling some of these gaps. More specifically, we look into the ways the application of a compressive measurement kernel impacts signal and noise characteristics and the relation it has to the signal recovery performance. We also investigate methods to infer the current complexity of the signal scene from the reduced-rate compressive observations without resorting to Nyquist-rate processing and show the advantage this knowledge offers to the recovery process. Having considered some of the universal aspects of compressive systems, we then move to studying a particular application, namely that of sub-Nyquist sampling and processing of sparse analog multiband signals. Within the sub-Nyquist sampling framework, we examine three different multiband scenarios that involve multiband sensing in spectral, angular and spatial domains. For each of them, we provide a sub-Nyquist receiver architecture, develop recovery methods and numerically evaluate their performance
    corecore