13,686 research outputs found

    Content Caching and Delivery over Heterogeneous Wireless Networks

    Full text link
    Emerging heterogeneous wireless architectures consist of a dense deployment of local-coverage wireless access points (APs) with high data rates, along with sparsely-distributed, large-coverage macro-cell base stations (BS). We design a coded caching-and-delivery scheme for such architectures that equips APs with storage, enabling content pre-fetching prior to knowing user demands. Users requesting content are served by connecting to local APs with cached content, as well as by listening to a BS broadcast transmission. For any given content popularity profile, the goal is to design the caching-and-delivery scheme so as to optimally trade off the transmission cost at the BS against the storage cost at the APs and the user cost of connecting to multiple APs. We design a coded caching scheme for non-uniform content popularity that dynamically allocates user access to APs based on requested content. We demonstrate the approximate optimality of our scheme with respect to information-theoretic bounds. We numerically evaluate it on a YouTube dataset and quantify the trade-off between transmission rate, storage, and access cost. Our numerical results also suggest the intriguing possibility that, to gain most of the benefits of coded caching, it suffices to divide the content into a small number of popularity classes.Comment: A shorter version is to appear in IEEE INFOCOM 201

    State-Slice: A New Stream Query Optimization Paradigm for Multi-query and Distributed Processing

    Get PDF
    Modern stream applications necessitate the handling of large numbers of continuous queries specified over high volume data streams. This dissertation proposes novel solutions to continuous query optimization in three core areas of stream query processing, namely state-slice based multiple continuous query sharing, ring-based multi-way join query distribution and scalable distributed multi-query optimization. The first part of the dissertation proposes efficient optimization strategies that utilize the novel state-slicing concept to achieve maximum memory and computation sharing for stream join queries with window constraints. Extensive analytical and experimental evaluations demonstrate that our proposed strategies is capable to minimize the memory or CPU consumptions for multiple join queries. The second part of this dissertation proposes a novel scheme for the distributed execution of generic multi-way joins with window constraints. The proposed scheme partitions the states into disjoint slices in the time domain, and then distributes the fine-grained states in the cluster, forming a virtual computation ring. New challenges to support this distributed state-slicing processing are answered by numerous new techniques. The extensive experimental evaluations show that the proposed strategies achieve significant performance improvements in terms of response time and memory usages for a wide range of configurations and workloads on a real system. Ring based distributed stream query processing and multi-query sharing both are based on the state-slice concept. The third part of this dissertation combines the first two parts of this dissertation work and proposes a novel distributed multi-query optimization technique

    Fast Deep Matting for Portrait Animation on Mobile Phone

    Full text link
    Image matting plays an important role in image and video editing. However, the formulation of image matting is inherently ill-posed. Traditional methods usually employ interaction to deal with the image matting problem with trimaps and strokes, and cannot run on the mobile phone in real-time. In this paper, we propose a real-time automatic deep matting approach for mobile devices. By leveraging the densely connected blocks and the dilated convolution, a light full convolutional network is designed to predict a coarse binary mask for portrait images. And a feathering block, which is edge-preserving and matting adaptive, is further developed to learn the guided filter and transform the binary mask into alpha matte. Finally, an automatic portrait animation system based on fast deep matting is built on mobile devices, which does not need any interaction and can realize real-time matting with 15 fps. The experiments show that the proposed approach achieves comparable results with the state-of-the-art matting solvers.Comment: ACM Multimedia Conference (MM) 2017 camera-read
    • …
    corecore