144 research outputs found

    Dynamic Voltage Restorer Application for Power Quality Improvement in Electrical Distribution System: An Overview

    Get PDF
    Dynamic Voltage Restorer (DVR) is a custom power device that is used to improve voltage disturbances in electrical distribution system. The components of the DVR consist of voltage source inverter (VSI), injection transformers, passive filters and energy storage. The main function of the DVR is used to inject three phase voltage in series and in synchronism with the grid voltages in order to compensate voltage disturbances. The Development of (DVR) has been proposed by many researchers. This paper presents a review of the researches on the DVR application for power quality Improvement in electrical distribution network. The types of DVR control strategies and its configuration has been discussed and may assist the researchers in this area to develop and proposed their new idea in order to build the prototype and controller

    Dynamic Voltage Restorer for Mitigation of Voltage Sags Due to 3 Phase Motor Starts Based on Artificial Neural Networks

    Get PDF
    The Direct On-Line (DOL) process of starting a high-power 3-phase induction motor causes voltage sags in the distribution system that is connected to one point of common coupling (PCC). Voltage sag can cause damage and failure of sensitive loads. This article analyzes and proposes a simulation of voltage sag recovery using a Dynamic Voltage Restorer (DVR) based on an Artificial Neural Network (ANN). ANN is used as a detector and regulator of the voltage compensation value. In this study, a 3-phase induction motor will be connected to a sensitive load, and the DVR will be placed in series with a voltage source or PCC with a sensitive load. The simulation test system uses Simulink-Matlab R2016a with different configurations of induction motor parameters. Based on the simulation results show that the parameters of the 3-phase induction motor cause the depth and duration of the voltage sag. DVR with ANN control can detect and compensate for a voltage sag of 0.5 pu so that the voltage will be normal to 1 pu

    Power quality improvement using ultra capacitor based dynamic voltage restorer with real twisting sliding mode control

    Get PDF
    Introduction. Power quality is a major problem in today's power system, since it may have an impact on customers and utilities. Problem. Power quality is important issue of financial consequences for utilities, their consumers and load apparatus vendors. Voltage sag/swell are the most significant and usually occurring power quality issues in a secondary distribution system for sensitive loads. Goal. Dynamic voltage restorer is a fast, flexible, effective and dynamic custom power device can be used to compensate voltage sag/swell with integration of energy storage. Ultra capacitors have ideal properties of great power density and low energy density for elimination of voltage sag/swell. Their performance is mostly determined by the control strategy established for switching of voltage source converters. Originality. In this research, a strategy for the voltage source converter of dynamic voltage restorer based on the real twisting sliding mode control and ultra capacitor is developed to correct the fault that successfully eliminates the impacts of voltage sag/swell. Methodology. Ultra capacitor along with real twisting sliding mode control gives the more robustness and faster response, with also increasing the compensation time of the dynamic voltage restorer. Testing environment. To evaluate the performance of the proposed control approach, the MATLAB / Simulink SimPower System tool box is employed. Practical values. According to Simulation results clearly shows that the ultra capacitor along with real twisting sliding mode control effectively eliminate the voltage sag/swell in a very short time of 2 ms as compared to IEEE standards that is 20 ms, with less than 5 % total harmonic distortion for sensitive loads as per Information Technology Industry Council Curve and SEMI-F-47 Standards.Вступ. Якість електроенергії являє собою серйозну проблему в сучасній енергосистемі, оскільки вона може впливати на споживачів та комунальні служби. Проблема. Якість електроенергії є важливим питанням з точки хору фінансових наслідків для комунальних підприємств, їх споживачів та постачальників апаратури-навантажень. Провали/стрибки напруги є найбільш серйозними проблемами з огляду на якість електроенергії, які зазвичай виникають у вторинній системі розподілу для чутливих навантажень. Мета. Динамічний відновник напруги — це швидкий, гнучкий, ефективний і динамічний пристрій живлення, який можна використовувати для компенсації провалів/стрибків напруги за допомогою інтеграції накопичувача енергії. Суперконденсатори мають ідеальні властивості високої щільності потужності та низької щільності енергії для усунення провалів/стрибків напруги. Їх ефективність переважно визначається стратегією управління, встановленої для комутації перетворювачів джерел напруги. Оригінальність. У цьому дослідженні розроблено стратегію для перетворювача джерела напруги динамічного відновника напруги на основі керування реальним ковзним режимом скручування та суперконденсатора для виправлення несправності, яка успішно усуває наслідки провалу/стрибка напруги. Методологія. Суперконденсатор разом із керуванням реальним ковзним режимом скручування забезпечує більшу надійність та швидшу реакцію, а також збільшує час компенсації динамічного відновника напруги. Середовище для тестування. Для оцінки ефективності запропонованого підходу до управління використовується комплекс програмного забезпечення MATLAB/Simulink SimPower System. Практична цінність. Згідно з результатами моделювання ясно видно, що суперконденсатор разом з керуванням реальним ковзним режимом скручування ефективно усувають провали/стрибки напруги за дуже короткий час 2 мс у порівнянні зі стандартами IEEE, у відповідності до яких він становить 20 мс, із загальним спотворенням гармонік менше 5 % для чутливого навантаження відповідно зі стандартами Information Technology Industry Council Curve та SEMI-F-47

    Voltage Distortion Mitigation in a Distributed Generation-integrated Weak Utility Network Via a Self-tuning Filter-based Dynamic Voltage Restorer

    Get PDF
    The dynamic voltage restorer (DVR) is mainly used in a utility grid to protect sensitive loads from power quality problems, such as voltage sags and swells. However, the effectiveness of the DVR can wane under unbalanced grid voltage conditions. Recently, DVR control algorithms have been developed that enable the elimination of voltage harmonics in weak and distorted utility networks. This paper presents a modified control method for the DVR, which can (1) compensate the voltage swell and (2) eliminate the voltage harmonics in a combined utility condition consisting of voltage unbalance and harmonic distortion. A self-tuning filter (STF) is used along with the pq controlmethod to increase the control performance of the DVR. One of the advantages of STF is that it eliminates the need to have multiple filters as part of the control method, and thus reduces the controller complexity. Analysis of the fault ride-through capability of the new DVR revealed an improvement in the voltage stability offered to distributed generation-integrated weak utility networks. The proposed DVR control method is modeled in MATLAB/Simulink and tested in both off-line and real-time environments using theOPALRT real-time platform. Results are then presented as a verification of the proposed system

    Design and Control of a Dynamic Voltage Restorer

    Get PDF

    Power quality enhancement in secondary electric power distr[i]bution networks using dynamic voltage restorer.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.This research study investigates and proposes an effective and efficient method for improving voltage profile and mitigating unbalance voltage, voltage variation disturbances in rural and urban secondary distribution networks. It also proffers solutions for improving the performance of future distribution networks in order to increase the optimum functioning, security and quality of electricity supply to end users, thus making the power grid smarter. This study involves the compensation of power quality disturbance in balanced and unbalanced, short and long distribution networks. The mitigation of result of this voltage variation, poor voltage profile and voltage unbalance with an effective power electronics based custom power controller known as Dynamic Voltage Restorer (DVR) conceived. DVR is usually connected between the source voltage and customer load. An innovative new design-model of the DVR has been proposed and developed using a dq0 controller and proportional integral (PI) controller method. Model simulation was carried out using MATLAB/Simulink in Sim Power System tool box. An analysis of the results obtained when the new DVR is not connected to and tested on LV networks shows that the voltage profile, percentage voltage deviation and percentage voltage unbalance for 0.5 km for balanced and unbalanced distribution networks are within standards and acceptable limits, hence, the voltages are admissible for customers’ use. It was further established that the voltage profile, percentage voltage unbalance, voltage drop and percentage voltage deviation for distribution networks of 0.8 km to 5 km range from the beginning to the end of the feeder are less than the statutory voltage limits of -5%, 2 %, 5 % and ± 5 % respectively, hence, voltages are inadmissible for customers’ use. Others results obtained when DVR was connected recognized that for distribution feeder lengths of 0.5 km to 5 km range for balanced and unbalanced, short and long distribution networks the voltage profile, voltage variation, voltage drop and percentage voltage unbalance are within statutory voltage limits of 0.95 p.u and 1.05 p.u, -5 %, and less than 2 % respectively. Based on this investigation, and in order to achieve efficient, reliable and cost-effective techniques for improving voltage profiles, decreasing voltage variations and reducing voltage unbalances, the new DVR model is recommended for enhancing optimal performances of secondary distribution networks

    Multi-objective power quality optimization of smart grid based on improved differential evolution

    Get PDF
    In the modern generation, Electric Power has become one of the fundamental needs for humans to survive. This is due to the dependence of continuous availability of power. However, for electric power to be available to the society, it has to pass through a number of complex stages. Through each stage power quality problems are experienced on the grid. Under-voltages and over-voltages are the most common electric problems experienced on the grid, causing industries and business firms losses of Billions of dollars each year. Researchers from different regions are attracted by an idea that will overcome all the electrical issues experienced in the traditional grid using Artificial Intelligence (AI). The idea is said to provide electric power that is sustainable, economical, reliable and efficient to the society based on Evolutionary Algorithms (EAs). The idea is Smart Grid. The research focused on Power Quality Optimization in Smart Grid based on improved Differential Evolution (DE), with the objective functions to minimize voltage swells, counterbalance voltage sags and eliminate voltage surges or spikes, while maximizing the power quality. During Differential Evolution improvement research, elimination of stagnation, better and fast convergence speed were achieved based on modification of DE’s mutation schemes and parameter control selection. DE/Modi/2 and DE/Modi/3 modified mutation schemes proved to be the excellent improvement for DE algorithm by achieving excellent optimization results with regards to convergence speed and elimination of stagnation during simulations. The improved DE was used to optimize Power Quality in smart grid in combination with the reconfigured and modified Dynamic Voltage Restorer (DVR). Excellent convergence results of voltage swells and voltage sags minimization were achieved based on application of multi-objective parallel operation strategy during simulations. MATLAB was used to model the proposed solution and experimental simulations.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    Hardware integration of ultracapacitor based energy storage to provide grid support and to improve power quality of the distribution grid

    Get PDF
    Grid integration of distributed energy resources (DERs) is increasing rapidly. Integration of various types of energy storage technologies like batteries, ultracapacitors (UCAPs), superconducting magnets and flywheels to support intermittent DERs, such as solar and wind, in order to improve their reliability is becoming necessary. Of all the energy storage technologies UCAPs have low energy density, high power density and fast charge/discharge characteristics. They also have more charge/discharge cycles and higher terminal voltage per module when compared to batteries. All these characteristics make UCAPs ideal choice for providing support to events on the distribution grid which require high power for short spans of time. UCAPs have traditionally been limited to regenerative braking and wind power smoothing applications. The major contribution of this dissertation is in integrating UCAPs for a broader range of applications like active/reactive power support, renewable intermittency smoothing, voltage sag/swell compensation and power quality conditioning to the distribution grid. Renewable intermittency smoothing is an application which requires bi-directional transfer of power from the grid to the UCAPs and vice-versa by charging and discharging the UCAPs. This application requires high active power support in the 10s-3min time scale which can be achieved by integrating UCAPs through a shunt active power filter (APF) which can also be used to provide active/reactive power support. Temporary voltage sag/swell compensation is another application which requires high active power support in the 3s-1min time scale which can be provided integrating UCAPs into the grid through series dynamic voltage restorer (DVR). All the above functionalities can also be provided by integrating the UCAPs into a power conditioner topology. --Abstract, page iv

    Optimized Sliding Mode Control to Maximize Existence Region for Single-Phase Dynamic Voltage Restorers

    Get PDF
    This paper presents an optimized sliding mode control (SMC) strategy to maximize existence region for single-phase dynamic voltage restorers. It is shown analytically that there exists an optimum sliding coefficient which enlarges the existence region of the sliding mode to its maximum. Also, it is pointed out that the optimum sliding coefficient improves the dynamic response. In addition, a double-band hysteresis control which ensures the switching of a transistor in the voltage source inverter during a half-cycle while it remains either on or off in the other half cycle is used to mitigate the switching frequency. The theoretical considerations and analytical results are verified through computer simulations and experimental results. Simulation and experimental results show that the proposed SMC strategy not only compensates the undesired voltage disturbances and maintains the load voltage at desired level with low total harmonic distortion, but also exhibits fast dynamic response and operates at reasonably low switching frequency
    corecore