2,070 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    迅速な災害管理のための即時的,持続可能,かつ拡張的なエッジコンピューティングの研究

    Get PDF
    本学位論文は、迅速な災害管理におけるいくつかの問題に取り組んだ。既存のネットワークインフラが災害による直接的なダメージや停電によって使えないことを想定し、本論文では、最新のICTを用いた次世代災害支援システムの構築を目指す。以下のとおり本論文は三部で構成される。第一部は、災害発生後の緊急ネットワーキングである。本論文では、情報指向フォグコンピューティング(Information-Centric Fog Computing)というアーキテクチャを提案し、既存のインフラがダウンした場合に臨時的なネットワーク接続を提供する。本論文では、六次の隔たり理論から着想を得て、緊急時向け名前ベースルーティング(Name-Based Routing)を考慮した。まず、二層の情報指向フォグコンピューティングネットワークモデルを提案した。次に、ソーシャルネットワークを元に、情報指向フォグノード間の関係をモデリングし、名前ベースルーティングプロトコルをデザインする。シミュレーション実験では、既存のソリューションと比較し、提案手法はより高い性能を示し、有用性が証明された。第二部は、ネットワークの通信効率の最適化である。本論文は、第一部で構築されたネットワークの通信効率を最適化し、ネットワークの持続時間を延ばすために、ネットワークのエッジで行われるキャッシングストラテジーを提案した。本論文では、まず、第一部で提案した二層ネットワークモデルをベースにサーバー層も加えて、異種ネットワークストラクチャーを構成した。次に、緊急時向けのエッジキャッシングに必要なTime to Live (TTL)とキャッシュ置換ポリシーを設計する。シミュレーション実験では、エネルギー消費とバックホールレートを性能指標とし、メモリ内キャッシュとディスクキャッシュの性能を比較した。結果では、メモリ内ストレージと処理がエッジキャッシングのエネルギーを節約し、かなりのワークロードを共有できることが示された。第三部は、ネットワークカバレッジの拡大である。本論文は、ドローンの関連技術とリアルタイム視覚認識技術を利用し、被災地のユーザ捜索とドローンの空中ナビゲーションを行う。災害管理におけるドローン制御に関する研究を調査し、現在のドローン技術と無人捜索救助に対する実際のニーズを考慮すると、軽量なソリューションが緊急時に必要であることが判明した。そのため本論文では、転移学習を利用し、ドローンに搭載されたオンボードコンピュータで実行可能な空中ビジョンに基づいたナビゲーションアプローチを開発した。シミュレーション実験では、1/150ミニチュアモデルを用いて、空中ナビゲーションの実行可能性をテストした。結果では、本論文で提案するドローンの軽量ナビゲーションはフィードバックに基づいてリアルタイムに飛行の微調整を実現でき、既存手法と比較して性能において大きな進歩を示した。This dissertation mainly focuses on solving the problems in agile disaster management. To face the situation when the original network infrastructure no longer works because of disaster damage or power outage, I come up with the idea of introducing different emerging technologies in building a next-generation disaster response system. There are three parts of my research. In the first part of emergency networking, I design an information-centric fog computing architecture to fast build a temporary emergency network while the original ones can not be used. I focus on solving name-based routing for disaster relief by applying the idea from six degrees of separation theory. I first put forward a 2-tier information-centric fog network architecture under the scenario of post-disaster. Then I model the relationships among ICN nodes based on delivered files and propose a name-based routing strategy to enable fast networking and emergency communication. I compare with DNRP under the same experimental settings and prove that my strategy can achieve higher work performance. In the second part of efficiency optimization, I introduce the idea of edge caching in prolong the lifetime of the rebuilt network. I focus on how to improve the energy efficiency of edge caching using in-memory storage and processing. Here I build a 3-tier heterogeneous network structure and propose two edge caching methods using different TTL designs & cache replacement policies. I use total energy consumption and backhaul rate as the two metrics to test the performance of the in-memory caching method and compare it with the conventional method based on disk storage. The simulation results show that in-memory storage and processing can help save more energy in edge caching and share a considerable workload in percentage. In the third part of coverage expansion, I apply UAV technology and real-time image recognition in user search and autonomous navigation. I focus on the problem of designing a navigation strategy based on the airborne vision for UAV disaster relief. After the survey of related works on UAV fly control in disaster management, I find that in consideration of the current UAV manufacturing technology and actual demand on unmanned search & rescue, a lightweight solution is in urgent need. As a result, I design a lightweight navigation strategy based on visual recognition using transfer learning. In the simulation, I evaluate my solutions using 1/150 miniature models and test the feasibility of the navigation strategy. The results show that my design on visual recognition has the potential for a breakthrough in performance and the idea of UAV lightweight navigation can realize real-time flight adjustment based on feedback.室蘭工業大学 (Muroran Institute of Technology)博士(工学

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed
    corecore