1,646 research outputs found

    Analysis, Design And Optimization Of Energy Efficient Protocols For Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization of Energy-Efficient Cluster Head Selection Algorithm for Internet of Things in Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) now uses the Wireless Sensor Network (WSN) as a platform to sense and communicate data. The increase in the number of embedded and interconnected devices on the Internet has resulted in a need for software solutions to manage them proficiently in an elegant and scalable manner. Also, these devices can generate massive amounts of data, resulting in a classic Big Data problem that must be stored and processed. Large volumes of information have to be produced by using IoT applications, thus raising two major issues in big data analytics. To ensure an efficient form of mining of both spatial and temporal data, a sensed sample has to be collected. So for this work, a new strategy to remove redundancy has been proposed. This classifies all forms of collected data to be either relevant or irrelevant in choosing suitable information even before they are forwarded to the base station or the cluster head. A Low-Energy Adaptive Clustering Hierarchy (LEACH) is a cluster-based routing protocol that uses cluster formation. The LEACH chooses one head from the network sensor nodes, such as the Cluster Head (CH), to rotate the role to a new distributed energy load. The CHs were chosen randomly with the possibility of all CHs being concentrated in one locality. The primary idea behind such dynamic clustering was them resulted in more overheads due to changes in the CH and advertisements. Therefore, the LEACH was not suitable for large networks. Here, Particle Swarm Optimization (PSO) and River Formation Dynamics are used to optimize the CH selection (RFD). The results proved that the proposed method to have performed better compared to other methods

    Improving quality of service in wireless sensor networks interconnected with the internet of things

    Get PDF

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Data Aggregation and Cross-layer Design in WSNs

    Get PDF
    Over the past few years, advances in electrical engineering have allowed electronic devices to shrink in both size and cost. It has become possible to incorporate environmental sensors into a single device with a microprocessor and memory to interpret the data and wireless transceivers to communicate the data. These sensor nodes have become small and cheap enough that they can be distributed in very large numbers into the area to be monitored and can be considered disposable. Once deployed, these sensor nodes should be able to self-organize themselves into a usable network. These wireless sensor networks, or WSNs, differ from other ad hoc networks mainly in the way that they are used. For example, in ad hoc networks of personal computers, messages are addressed from one PC to another. If a message cannot be routed, the network has failed. In WSNs, data about the environment is requested by the data sink. If any or multiple sensor nodes can return an informative response to this request, the network has succeeded. A network that is viewed in terms of the data it can deliver as opposed to the individual devices that make it up has been termed a data-centric network [26]. The individual sensor nodes may fail to respond to a query, or even die, as long as the final result is valid. The network is only considered useless when no usable data can be delivered. In this thesis, we focus on two aspects. The first is data aggregation with accurate timing control. In order to maintain a certain degree of service quality and a reasonable system lifetime, energy needs to be optimized at every stage of system operation. Because wireless communication consumes a major amount of the limited battery power for these sensor nodes, we propose to limit the amount of data transmitted by combining redundant and complimentary data as much as possible in order to transmit smaller and fewer messages. By using mathematical models and computer simulations, we will show that our aggregation-focused protocol does, indeed, extend system lifetime. Our secondary focus is a study of cross-layer design. We argue that the extremely specialized use of WSNs should convince us not to adhere to the traditional OSI networking model. Through our experiments, we will show that significant energy savings are possible when a custom cross-layer communication model is used

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    A Survey on Energy Efficient Routing Protocols in Wireless Sensor Networks

    Get PDF
    Energy efficiency is one of the critical issues in the Wireless Sensor Networks (WSNs), since sensor devices are tiny and integrated with a limited capacity battery. In most of the advanced applications, WSNs operate in very harsh areas and not under supervision of human controls. Routing protocols play a significant role in energy balancing by incorporating the techniques that can reduce control overhead, proper data aggregation method and feasible path selection. It demands a unique requirement due to its frequent topology changes and distributive nature. One of the major concerns in the design of routing protocol in WSNs is efficient energy usage and prolonging Network lifetime. This paper mainly discusses different issues related to energy efficiency in routing protocols of all categories. It incorporates most recent routing protocols which improves the energy efficiency in various application environments. This paper also provides comprehensive details of each protocol which emphasize their principles and explore their advantages and limitations. These protocols belong to different classifications based on Network Structures, communication model, topology and QoS parameters. It also includes more relevant and prominent comparisons with all recent State-of-Art works

    Energy-efficient routing protocols in heterogeneous wireless sensor networks

    Get PDF
    Sensor networks feature low-cost sensor devices with wireless network capability, limited transmit power, resource constraints and limited battery energy. The usage of cheap and tiny wireless sensors will allow very large networks to be deployed at a feasible cost to provide a bridge between information systems and the physical world. Such large-scale deployments will require routing protocols that scale to large network sizes in an energy-efficient way. This thesis addresses the design of such network routing methods. A classification of existing routing protocols and the key factors in their design (i.e., hardware, topology, applications) provides the motivation for the new three-tier architecture for heterogeneous networks built upon a generic software framework (GSF). A range of new routing algorithms have hence been developed with the design goals of scalability and energy-efficient performance of network protocols. They are respectively TinyReg - a routing algorithm based on regular-graph theory, TSEP - topological stable election protocol, and GAAC - an evolutionary algorithm based on genetic algorithms and ant colony algorithms. The design principle of our routing algorithms is that shortening the distance between the cluster-heads and the sink in the network, will minimise energy consumption in order to extend the network lifetime, will achieve energy efficiency. Their performance has been evaluated by simulation in an extensive range of scenarios, and compared to existing algorithms. It is shown that the newly proposed algorithms allow long-term continuous data collection in large networks, offering greater network longevity than existing solutions. These results confirm the validity of the GSF as an architectural approach to the deployment of large wireless sensor networks
    corecore