4,752 research outputs found

    Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments

    Get PDF
    Traffic waves are phenomena that emerge when the vehicular density exceeds a critical threshold. Considering the presence of increasingly automated vehicles in the traffic stream, a number of research activities have focused on the influence of automated vehicles on the bulk traffic flow. In the present article, we demonstrate experimentally that intelligent control of an autonomous vehicle is able to dampen stop-and-go waves that can arise even in the absence of geometric or lane changing triggers. Precisely, our experiments on a circular track with more than 20 vehicles show that traffic waves emerge consistently, and that they can be dampened by controlling the velocity of a single vehicle in the flow. We compare metrics for velocity, braking events, and fuel economy across experiments. These experimental findings suggest a paradigm shift in traffic management: flow control will be possible via a few mobile actuators (less than 5%) long before a majority of vehicles have autonomous capabilities

    Effects of low speed limits on freeway traffic flow

    Get PDF
    Recent years have seen a renewed interest in Variable Speed Limit (VSL) strategies. New opportunities for VSL as a freeway metering mechanism or a homogenization scheme to reduce speed differences and lane changing maneuvers are being explored. This paper examines both the macroscopic and microscopic effects of different speed limits on a traffic stream, especially when adopting low speed limits. To that end, data from a VSL experiment carried out on a freeway in Spain are used. Data include vehicle counts, speeds and occupancy per lane, as well as lane changing rates for three days, each with a different fixed speed limit (80 km/h, 60 km/h, and 40km/h). Results reveal some of the mechanisms through which VSL affects traffic performance, specifically the flow and speed distribution across lanes, as well as the ensuing lane changing maneuvers. It is confirmed that the lower the speed limit, the higher the occupancy to achieve a given flow. This result has been observed even for relatively high flows and low speed limits. For instance, a stable flow of 1942 veh/h/lane has been measured with the 40 km/h speed limit in force. The corresponding occupancy was 33%, doubling the typical occupancy for this flow in the absence of speed limits. This means that VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here, where speed limits have a reduced ability to limit flows. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Additionally, results show that lower speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rate. This means that VSL strategies aiming to homogenize traffic and reduce lane changing activity might not be successful when adopting such low speed limits. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane is avoided. These findings are useful for the development of better traffic models that are able to emulate these effects. Moreover, they are crucial for the implementation and assessment of VSL strategies and other traffic control algorithms.Peer ReviewedPostprint (published version

    Hybrid model predictive control for freeway traffic using discrete speed limit signals

    Get PDF
    HYCON2 Show day - Traffic modeling, Estimation and Control 13/05/2014 GrenobleIn this paper, two hybrid Model Predictive Control (MPC) approaches for freeway traffic control are proposed considering variable speed limits (VSL) as discrete variables as in current real world implementations. These discrete characteristics of the speed limits values and some necessary constraints for the actual operation of VSL are usually underestimated in the literature, so we propose a way to include them using a macroscopic traffic model within an MPC framework. For obtaining discrete signals, the MPC controller has to solve a highly non-linear optimization problem, including mixed-integer variables. Since solving such a problem is complex and difficult to execute in real-time, we propose some methods to obtain reasonable control actions in a limited computation time. The first two methods (-exhaustive and -genetic discretization) consist of first relaxing the discrete constraints for the VSL inputs; and then, based on this continuous solution and using a genetic or an exhaustive algorithm, to find discrete solutions within a distance of the continuous solution that provide a good performance. The second class of methods split the problem in a continuous optimization for the ramp metering signals and in a discrete optimization for speed limits. The speed limits optimization, which is much more time-consuming than the ramp metering one, is solved by a genetic or an exhaustive algorithm in communication with a non-linear solver for the ramp metering. The proposed methods are tested by simulation, showing not only a good performance, but also keeping the computation time reduced.Unión Europea FP7/2007–201

    Integrated Freeway and Arterial Traffic Control to Improve Freeway Mobility without Compromising Arterial Traffic Conditions Using Q-Learning

    Full text link
    Freeway and arterial transportation networks are operated individually in most cities nowadays. The lack of coordination between the two increases the severity of traffic congestion when they are heavily loaded. To address the issue, we propose an integrated traffic control strategy that coordinates freeway traffic control (variable speed limit control, lane change recommendations, ramp metering) and arterial signal timing using Q-learning. The agent is trained offline in a single-section road network first, and then implemented online in a large simulation network with real-world traffic demands. The online data are collected to further improve the agent's performance via continuous learning. We observe significant reductions in freeway travel time and number of stops and a slight increase in on-ramp queue lengths by implementing the proposed approach in scenarios with traffic congestion. Meanwhile, the queue lengths of adjacent arterial intersections are maintained at the same level. The benefits of the coordination mechanism is verified by comparing the proposed approach with an uncoordinated Q-learning algorithm and a decentralized feedback control strategy.Comment: 12 pages, 10 figures, 5 table

    Freeway shockwave control using ramp metering and variable speed limits

    Get PDF

    MARVEL: Multi-Agent Reinforcement-Learning for Large-Scale Variable Speed Limits

    Full text link
    Variable speed limit (VSL) control is a promising traffic management strategy for enhancing safety and mobility. This work introduces MARVEL, a multi-agent reinforcement learning (MARL) framework for implementing large-scale VSL control on freeway corridors using only commonly available data. The agents learn through a reward structure that incorporates adaptability to traffic conditions, safety, and mobility; enabling coordination among the agents. The proposed framework scales to cover corridors with many gantries thanks to a parameter sharing among all VSL agents. The agents are trained in a microsimulation environment based on a short freeway stretch with 8 gantries spanning 7 miles and tested with 34 gantries spanning 17 miles of I-24 near Nashville, TN. MARVEL improves traffic safety by 63.4% compared to the no control scenario and enhances traffic mobility by 14.6% compared to a state-of-the-practice algorithm that has been deployed on I-24. An explainability analysis is undertaken to explore the learned policy under different traffic conditions and the results provide insights into the decision-making process of agents. Finally, we test the policy learned from the simulation-based experiments on real input data from I-24 to illustrate the potential deployment capability of the learned policy

    Distributed traffic control for reduced fuel consumption and travel time in transportation networks

    Get PDF
    This paper proposes a distributed framework for optimal control of vehicles in transportation networks. The objective is to reduce the balanced fuel consumption and travel time through hybrid control on speed limit and ramp metering rate. The dual decomposition theory associated with the subgradient method is then applied in order to decompose the optimal control problem into a series of suboptimal problems and then solve them individually via networked road infrastructures (RIs). Coordination among connected RIs is followed in each iteration to update the individual controls. An example is demonstrated to verify the reduction in terms of fuel consumption and travel time using the proposed approach
    • …
    corecore