3,968 research outputs found

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    Energy Harvesting Techniques for Internet of Things (IoT)

    Get PDF
    The rapid growth of the Internet of Things (IoT) has accelerated strong interests in the development of low-power wireless sensors. Today, wireless sensors are integrated within IoT systems to gather information in a reliable and practical manner to monitor processes and control activities in areas such as transportation, energy, civil infrastructure, smart buildings, environment monitoring, healthcare, defense, manufacturing, and production. The long-term and self-sustainable operation of these IoT devices must be considered early on when they are designed and implemented. Traditionally, wireless sensors have often been powered by batteries, which, despite allowing low overall system costs, can negatively impact the lifespan and the performance of the entire network they are used in. Energy Harvesting (EH) technology is a promising environment-friendly solution that extends the lifetime of these sensors, and, in some cases completely replaces the use of battery power. In addition, energy harvesting offers economic and practical advantages through the optimal use of energy, and the provisioning of lower network maintenance costs. We review recent advances in energy harvesting techniques for IoT. We demonstrate two energy harvesting techniques using case studies. Finally, we discuss some future research challenges that must be addressed to enable the large-scale deployment of energy harvesting solutions for IoT environments

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Survey of Energy Harvesting Technologies for Wireless Sensor Networks

    Get PDF
    Energy harvesting (EH) technologies could lead to self-sustaining wireless sensor networks (WSNs) which are set to be a key technology in Industry 4.0. There are numerous methods for small-scale EH but these methods differ greatly in their environmental applicability, energy conversion characteristics, and physical form which makes choosing a suitable EH method for a particular WSN application challenging due to the specific application-dependency. Furthermore, the choice of EH technology is intrinsically linked to non-trivial decisions on energy storage technologies and combinatorial architectures for a given WSN application. In this paper we survey the current state of EH technology for small-scale WSNs in terms of EH methods, energy storage technologies, and EH system architectures for combining methods and storage including multi-source and multi-storage architectures, as well as highlighting a number of other optimisation considerations. This work is intended to provide an introduction to EH technologies in terms of their general working principle, application potential, and other implementation considerations with the aim of accelerating the development of sustainable WSN applications in industry

    Kinetic Energy Harvesting

    Get PDF

    Review of Contemporary Energy Harvesting Techniques and Their Feasibility in Wireless Geophones

    Full text link
    Energy harvesting converts ambient energy to electrical energy providing numerous opportunities to realize wireless sensors. Seismic exploration is a prime avenue to benefit from it as energy harvesting equipped geophones would relieve the burden of cables which account for the biggest chunk of exploration cost and equipment weight. Since numerous energies are abundantly available in seismic fields, these can be harvested to power up geophones. However, due to the random and intermittent nature of the harvested energy, it is important that geophones must be equipped to tap from several energy sources for a stable operation. It may involve some initial installation cost but in the long run, it is cost-effective and beneficial as the sources for energy harvesting are available naturally. Extensive research has been carried out in recent years to harvest energies from various sources. However, there has not been a thorough investigation of utilizing these developments in the seismic context. In this survey, a comprehensive literature review is provided on the research progress in energy harvesting methods suitable for direct adaptation in geophones. Specifically, the focus is on small form factor energy harvesting circuits and systems capable of harvesting energy from wind, sun, vibrations, temperature difference, and radio frequencies. Furthermore, case studies are presented to assess the suitability of the studied energy harvesting methods. Finally, a design of energy harvesting equipped geophone is also proposed
    corecore