138 research outputs found

    Tensile rotary power transmission model development for airborne wind energy systems

    Get PDF
    Rotary airborne wind energy (AWE) systems are a family of AWE devices that utilise networked kites to form rotors. One such device is the Daisy Kite developed by Windswept and Interesting. The Daisy Kite uses a novel tensile rotary power transmission (TRPT) to transfer power generated at the flying rotor down to the ground. Two dynamic models have been developed and compared; one with simple spring-disc representation, and one with multi-spring representation that can take account of more degrees of freedom. Simulation results show that the angular velocity responses of the two TRPT models are more closely correlated in higher wind speeds when the system shows stiffer torsional behaviour. Another interesting point is the observation of two equilibrium states, when the spring-disc TRPT model is coupled with NREL's AeroDyn. Given the computational efficiency of the simpler model and the high correlation of the results between the two models, the simple model can be used for more demanding simulations

    Modeling and natural mode analysis of tethered multi-aircraft systems

    Get PDF
    Two complementary simulators aimed at the dynamic analysis of airborne wind energy systems based on multi-aircraft configurations are presented. The first model considers a train of stacked aircraft linked among them by two inelastic and massless tethers with no aerodynamic drag. The architecture of the mechanical system in the second simulator is configurable, as long as the system is made of a set of aircraft linked by an arbitrary number of elastic tethers. In both cases, the aircraft are modeled as rigid bodies and the controller is incorporated in the aerodynamic torque through the deflections of control surfaces. An analysis of the symmetric equilibrium state and the corresponding natural modes of a train (stacked configuration) of aircraft was carried out. It revealed that the higher the position of the aircraft in the train, the more they participate in the modes. Tether inertial and aerodynamic drag effects increase the equilibrium angles of attack of the aircraft and the tether tension at the attachment points. The potential applications and computational performance of the two codes are discussed.This work was supported by the Ministerio de Ciencia, Innovación y Universidades of Spain and the European Regional Development Fund under the GreenKite project ENE2015-69937-R (MINECO/FEDER, UE) and continued under the GreenKite-2 project funded by Agencia Estatal de Investigación (PID2019-110146RB-I00/ AEI / 10.13039/501100011033). GSA work is supported by the Ministerio de Ciencia, Innovación y Universidades of Spain under the Grant RYC-2014-15357

    Airborne Wind Energy Conference 2019 : (AWEC 2019)

    Get PDF
    [Book of Abstracts from the Airborne Wind Energy Conference 2019.

    Flight trajectory optimization of Fly-Gen airborne wind energy systems through a harmonic balance method

    Get PDF
    The optimal control problem for flight trajectories of Fly-Gen airborne wind energy systems (AWESs) is a crucial research topic for the field, as suboptimal paths can lead to a drastic reduction in power production. One of the novelties of the present work is the expression of the optimal control problem in the frequency domain through a harmonic balance formulation. This allows the potential reduction of the problem size by solving only for the main harmonics and allows the implicit imposition of periodicity of the solution. The trajectory is described by the Fourier coefficients of the dynamics (elevation and azimuth angles) and of the control inputs (onboard wind turbine thrust and AWES roll angle). To isolate the effects of each physical phenomenon, optimal trajectories are presented with an increasing level of physical representation from the most idealized case: (i) if the mean thrust power (mechanical power linked to the dynamics) is considered as the objective function, optimal trajectories are characterized by a constant AWES velocity over the loop and a circular shape. This is done by converting all the gravitational potential energy into electrical energy. At low wind speed, onboard wind turbines are then used as propellers in the ascendant part of the loop; (ii) if the mean shaft power (mechanical power after momentum losses) is the objective function, a part of the potential energy is converted into kinetic and the rest into electrical energy. Therefore, the AWES velocity fluctuates over the loop; (iii) if the mean electrical power is considered as the objective function, the onboard wind turbines are never used as propellers because of the power conversion efficiency. Optimal trajectories for case (ii) and (iii) have a circular shape squashed along the vertical direction. The optimal control inputs can be generally modeled with one harmonic for the onboard wind turbine thrust and two for AWES roll angle without a significant loss of power, demonstrating that the absence of high-frequency control is not detrimental to the power generated by Fly-Gen AWESs.The work by PoliMI had no external funding and was therefore self-funded by the research team. The work by ICF was carried out under the framework of the GreenKite-2 project (PID2019-110146RB-I00) funded by MCIN/AEI/10.13039/501100011033

    Modelling and analysis of rotary airborne wind energy systems : a tensile rotary power transmission design

    Get PDF
    Airborne wind energy is a novel form of wind power. Through the use of lightweight wings and tethers it aims to access locations out of reach to current wind harvesting devices, at a lower cost and with a lower impact on the environment. There are multiple airborne wind energy systems currently under development, one group of these, referred to as rotary systems, use multiple wings networked together to form rotors. This thesis presents an analysis on the design and operation of rotary systems, with a particular focus on the power transmission from the airborne components down to the ground. There are various power transmission methods used for rotary systems, among them tensile rotary power transmission uses multiple networked tethers held apart by a small number of rigid components to transfer torque from a flying rotor down to a ground station. The aim of this research is to improve the design and operation of rotary airborne wind energy systems that incorporate tensile rotary power transmission, and to assess system performance based on mathematical modelling and test data. It focuses on the Daisy Kite system design, a rotary system, being developed by Windswept and Interesting. Included in this thesis work is the development of three mathematical representations to support systematic analysis and design improvement. The first representation, a steady state model, is used to analyse rotary system design. The second and third models are dynamic representations of varying complexity. Also included is an experimental campaign conducted on the Daisy Kite in collaboration with Windswept and Interesting. Field tests are carried out on nine different Daisy Kite prototypes at their test site on the Isle of Lewis, Scotland. Measured data is collected for the various prototype designs under different operating conditions. The measured data is used to assess the reliability of the three mathematical representations. This allows the models to be validated and compared to one another in terms of their accuracy and computational efficiency. During the experimental campaign several design and operational improvements are made that increase the power output and lead to more reliable operation. The mathematical representations are used to identify key design factors and to optimise rotary system design. Improved understanding and design of the rotary airborne wind energy system has been achieved through this holistic investigation.Airborne wind energy is a novel form of wind power. Through the use of lightweight wings and tethers it aims to access locations out of reach to current wind harvesting devices, at a lower cost and with a lower impact on the environment. There are multiple airborne wind energy systems currently under development, one group of these, referred to as rotary systems, use multiple wings networked together to form rotors. This thesis presents an analysis on the design and operation of rotary systems, with a particular focus on the power transmission from the airborne components down to the ground. There are various power transmission methods used for rotary systems, among them tensile rotary power transmission uses multiple networked tethers held apart by a small number of rigid components to transfer torque from a flying rotor down to a ground station. The aim of this research is to improve the design and operation of rotary airborne wind energy systems that incorporate tensile rotary power transmission, and to assess system performance based on mathematical modelling and test data. It focuses on the Daisy Kite system design, a rotary system, being developed by Windswept and Interesting. Included in this thesis work is the development of three mathematical representations to support systematic analysis and design improvement. The first representation, a steady state model, is used to analyse rotary system design. The second and third models are dynamic representations of varying complexity. Also included is an experimental campaign conducted on the Daisy Kite in collaboration with Windswept and Interesting. Field tests are carried out on nine different Daisy Kite prototypes at their test site on the Isle of Lewis, Scotland. Measured data is collected for the various prototype designs under different operating conditions. The measured data is used to assess the reliability of the three mathematical representations. This allows the models to be validated and compared to one another in terms of their accuracy and computational efficiency. During the experimental campaign several design and operational improvements are made that increase the power output and lead to more reliable operation. The mathematical representations are used to identify key design factors and to optimise rotary system design. Improved understanding and design of the rotary airborne wind energy system has been achieved through this holistic investigation

    Impact of wind profiles on ground-generation airborne wind energy system performance

    Get PDF
    This study investigates the performance of pumping-mode ground-generation airborne wind energy systems (AWESs) by determining cyclical, feasible, power-optimal flight trajectories based on realistic vertical wind velocity profiles. These 10 min profiles, derived from mesoscale weather simulations at an offshore and an onshore site in Europe, are incorporated into an optimal control model that maximizes average cycle power by optimizing the trajectory. To reduce the computational cost, representative wind conditions are determined based on k-means clustering. The results describe the influence of wind speed magnitude and profile shape on the power, tether tension, tether reeling speed, and kite trajectory during a pumping cycle. The effect of mesoscale-simulated wind profiles on power curves is illustrated by comparing them to logarithmic wind profiles. Offshore, the results are in good agreement, while onshore power curves differ due to more frequent non-monotonic wind conditions. Results are references against a simplified quasi-steady-state model and wind turbine model. This study investigates how power curves based on mesoscale-simulated wind profiles are affected by the choice of reference height. Our data show that optimal operating heights are generally below 400 m with most AWESs operating at around 200 m.</p

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    The Impact Of Unmanned Aircraft System Observations On Convection Initiation Along A Boundary In Numerical Weather Prediction

    Get PDF
    Executing meteorological research experiments that utilize Small Unmanned Aircraft Systems (sUASs) is difficult due to regulatory limitations, and knowledge regarding weather impacts is limited. To overcome these challenges, an Observing System Simulation Experiment (OSSE) is used herein as a relatively inexpensive method to evaluate how these platforms could hypothetically improve the development, progression, and characteristics of simulated meteorological phenomena in Numerical Weather Prediction (NWP). This OSSE is part of a case study of an event that occurred in southwestern Oklahoma in May 2016 to examine how sUAS observations impact Convection Initiation (CI) along a boundary in NWP. Synthetic observations of dew point, temperature, wind speed and wind direction were collected by a simulated sUAS, and were ingested into the Weather Research and Forecasting (WRF) model via WRF Data Assimilation (WRFDA). The Three-Dimensional Variational Data Assimilation (3DVAR) technique was used and four sensitivity tests were conducted. These sensitivity tests included how the type of flight pattern, sampling frequency, background error covariance length scale, and assimilated observations impacted convection initiation along a dry line. Results showed that the type of flight pattern, background error covariance length scale, and type of observations assimilated significantly impacted CI and dry line characteristics

    Energy. A continuing bibliography with indexes, issue 36, January 1983

    Get PDF
    This bibliography lists 1297 reports, articles, and other documents introduced into the NASA scientific and technical information system from October 1, 1982 through December 31, 1982
    • …
    corecore