8,185 research outputs found

    Guaranteed Control of Sampled Switched Systems using Semi-Lagrangian Schemes and One-Sided Lipschitz Constants

    Full text link
    In this paper, we propose a new method for ensuring formally that a controlled trajectory stay inside a given safety set S for a given duration T. Using a finite gridding X of S, we first synthesize, for a subset of initial nodes x of X , an admissible control for which the Euler-based approximate trajectories lie in S at t ∈\in [0,T]. We then give sufficient conditions which ensure that the exact trajectories, under the same control, also lie in S for t ∈\in [0,T], when starting at initial points 'close' to nodes x. The statement of such conditions relies on results giving estimates of the deviation of Euler-based approximate trajectories, using one-sided Lipschitz constants. We illustrate the interest of the method on several examples, including a stochastic one

    Robust Model Predictive Longitudinal Position Tracking Control for an Autonomous Vehicle Based on Multiple Models

    Full text link
    The aim of this work is to control the longitudinal position of an autonomous vehicle with an internal combustion engine. The powertrain has an inherent dead-time characteristic and constraints on physical states apply since the vehicle is neither able to accelerate arbitrarily strong, nor to drive arbitrarily fast. A model predictive controller (MPC) is able to cope with both of the aforementioned system properties. MPC heavily relies on a model and therefore a strategy on how to obtain multiple linear state space prediction models of the nonlinear system via input/output data system identification from acceleration data is given. The models are identified in different regions of the vehicle dynamics in order to obtain more accurate predictions. The still remaining plant-model mismatch can be expressed as an additive disturbance which can be handled through robust control theory. Therefore modifications to the models for applying robust MPC tracking control theory are described. Then a controller which guarantees robust constraint satisfaction and recursive feasibility is designed. As a next step, modifications to apply the controller on multiple models are discussed. In this context, a model switching strategy is provided and theoretical and computational limitations are pointed out. Lastly, simulation results are presented and discussed, including computational load when switching between systems.Comment: Accepted for 2020 IEEE Symposium Series on Computational Intelligence (IEEE SSCI

    Reachability-based Identification, Analysis, and Control Synthesis of Robot Systems

    Full text link
    We introduce reachability analysis for the formal examination of robots. We propose a novel identification method, which preserves reachset conformance of linear systems. We additionally propose a simultaneous identification and control synthesis scheme to obtain optimal controllers with formal guarantees. In a case study, we examine the effectiveness of using reachability analysis to synthesize a state-feedback controller, a velocity observer, and an output feedback controller.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore