7,668 research outputs found

    Differential Dynamic Programming for time-delayed systems

    Full text link
    Trajectory optimization considers the problem of deciding how to control a dynamical system to move along a trajectory which minimizes some cost function. Differential Dynamic Programming (DDP) is an optimal control method which utilizes a second-order approximation of the problem to find the control. It is fast enough to allow real-time control and has been shown to work well for trajectory optimization in robotic systems. Here we extend classic DDP to systems with multiple time-delays in the state. Being able to find optimal trajectories for time-delayed systems with DDP opens up the possibility to use richer models for system identification and control, including recurrent neural networks with multiple timesteps in the state. We demonstrate the algorithm on a two-tank continuous stirred tank reactor. We also demonstrate the algorithm on a recurrent neural network trained to model an inverted pendulum with position information only.Comment: 7 pages, 6 figures, conference, Decision and Control (CDC), 2016 IEEE 55th Conference o

    Memory Resilient Gain-scheduled State-Feedback Control of Uncertain LTI/LPV Systems with Time-Varying Delays

    Get PDF
    The stabilization of uncertain LTI/LPV time delay systems with time varying delays by state-feedback controllers is addressed. At the difference of other works in the literature, the proposed approach allows for the synthesis of resilient controllers with respect to uncertainties on the implemented delay. It is emphasized that such controllers unify memoryless and exact-memory controllers usually considered in the literature. The solutions to the stability and stabilization problems are expressed in terms of LMIs which allow to check the stability of the closed-loop system for a given bound on the knowledge error and even optimize the uncertainty radius under some performance constraints; in this paper, the H∞\mathcal{H}_\infty performance measure is considered. The interest of the approach is finally illustrated through several examples

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Output model-following control synthesis for an oblique-wing aircraft

    Get PDF
    Recent interest in oblique-wing aircraft has focused on the potential aerodynamic performance advantage of a variable-skew oblique wing over a conventional or symmetric sweep wing. Unfortunately, the resulting asymmetric configuration has significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. Presented here is a decoupling control law synthesis technique that integrates stability augmentation, decoupling, and the direct incorporation of desired handling qualities into an output feedback controller. The proposed design technique uses linear quadratic regulator concepts in the framework of explicit model following. The output feedback strategy used is a suboptimal projection from the state space to the output space. Dynamics are then introduced into the controller to improve steady-state performance and increase system robustness. Closed-loop performance is shown by application of the control laws to the linearized equations of motion and nonlinear simulation of an oblique-wing aircraft

    Analytical and simulator study of advanced transport

    Get PDF
    An analytic methodology, based on the optimal-control pilot model, was demonstrated for assessing longitidunal-axis handling qualities of transport aircraft in final approach. Calibration of the methodology is largely in terms of closed-loop performance requirements, rather than specific vehicle response characteristics, and is based on a combination of published criteria, pilot preferences, physical limitations, and engineering judgment. Six longitudinal-axis approach configurations were studied covering a range of handling qualities problems, including the presence of flexible aircraft modes. The analytical procedure was used to obtain predictions of Cooper-Harper ratings, a solar quadratic performance index, and rms excursions of important system variables

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms
    • …
    corecore