46 research outputs found

    MICROCANTILEVER-BASED FORCE SENSING, CONTROL AND IMAGING

    Get PDF
    This dissertation presents a distributed-parameters base modeling framework for microcantilever (MC)-based force sensing and control with applications to nanomanipulation and imaging. Due to the widespread applications of MCs in nanoscale force sensing or atomic force microscopy with nano-Newton to pico-Newton force measurement requirements, precise modeling of the involved MCs is essential. Along this line, a distributed-parameters modeling framework is proposed which is followed by a modified robust controller with perturbation estimation to target the problem of delay in nanoscale imaging and manipulation. It is shown that the proposed nonlinear model-based controller can stabilize such nanomanipulation process in a very short time compared to available conventional methods. Such modeling and control development could pave the pathway towards MC-based manipulation and positioning. The first application of the MC-based (a piezoresistive MC) force sensors in this dissertation includes MC-based mass sensing with applications to biological species detection. MC-based sensing has recently attracted extensive interest in many chemical and biological applications due to its sensitivity, extreme applicability and low cost. By measuring the stiffness of MCs experimentally, the effect of adsorption of target molecules can be quantified. To measure MC\u27s stiffness, an in-house nanoscale force sensing setup is designed and fabricated which utilizes a piezoresistive MC to measure the force acting on the MC\u27s tip with nano-Newton resolution. In the second application, the proposed MC-based force sensor is utilized to achieve a fast-scan laser-free Atomic Force Microscopy (AFM). Tracking control of piezoelectric actuators in various applications including scanning probe microscopes is limited by sudden step discontinuities within time-varying continuous trajectories. For this, a switching control strategy is proposed for effective tracking of such discontinuous trajectories. A new spiral path planning is also proposed here which improves scanning rate of the AFM. Implementation of the proposed modeling and controller in a laser-free AFM setup yields high quality image of surfaces with stepped topographies at frequencies up to 30 Hz. As the last application of the MC-based force sensors, a nanomanipulator named here MM3AÂź is utilized for nanomanipulation purposes. The area of control and manipulation at the nanoscale has recently received widespread attention in different technologies such as fabricating electronic chipsets, testing and assembly of MEMS and NEMS, micro-injection and manipulation of chromosomes and genes. To overcome the lack of position sensor on this particular manipulator, a fused vision force feedback robust controller is proposed. The effects of utilization of the image and force feedbacks are individually discussed and analyzed for use in the developed fused vision force feedback control framework in order to achieve ultra precise positioning and optimal performance

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    Stochastic Approach for Feature-Based Tip Localization and Planning in Nanomanipulations

    Full text link

    A nano-tensile testing system for studying nanostructures inside an electron microscope:design, characterization and application

    Get PDF
    Mechanical properties of nanostructures could be remarkably different from their bulk counterparts owing to scale effects, which have attracted considerable research interest in recent years. However, nanomechanics studies are hindered by the difficulties of conducting well-instrumented mechanical testing. The objective of this thesis is to develop a novel tensile stage that can be used to probe mechanical properties of universal one-dimensional (1D) nanostructures, like nanowires and nanotubes, inside a scanning/transmission electron microscope (SEM/TEM). The main challenges of performing tensile tests at the nanoscale are: (1) specimen alignment and fixation on the tensile stage; (2) application and measurement of tensile force with nano-Newton resolution; (3) measurement of specimen elongation with nanometer resolution. Previous studies have shown that micro-electromechanical system (MEMS) technology combined with advanced microscopy (e.g. SEM and TEM) provides promising perspectives to address these challenges. Two types of nano-tensile stages, fabricated in a silicon on insulator (SOI) wafer, were developed in this thesis, which consisted of a comb-drive actuator and either a differential capacitive force sensor or a double clamped beam force sensor. The optimized comb-drive actuators could output an in-plane force of about 210 ”N at a drive voltage of 120 V, and the force sensors achieved resolutions of better than 50 nN. Individual 1D nanostructures were placed on the MEMS device by in-situ nanomanipulations and fixed at their two ends via focused electron beam induced deposition (FEBID). A strategy of modifying device topography, e.g. in the form of trenches or pillars, was proposed to facilitate the specimen preparation by in-situ manipulation that could achieve a high yield of about 80%. The mechanical testing function of the developed micro devices was demonstrated by tensile tests on individual Co and Si nanowires (NWs) inside an SEM. The average apparent Young's modulus, tensile strength and fracture strain of the electrochemically deposited Co NWs were measured to be (75.3±14.6) GPa, (1.6±0.4) GPa and (2.2±0.6) %, respectively. The measured Young's modulus is significantly lower than that of Co in the bulk form (209 GPa), which is likely caused by structural defects (e.g. pores) and surface effects (e.g. surface contaminations and surface oxide layers). The phosphorous-doped SiNWs grown bottom up by the vapor-liquid-solid (VLS) technique showed an average Young's modulus of (170.0±2.4) GPa and a tensile strength larger than 8.3 GPa. This finding confirms that materials strength increases as their sizes scale down. The top down electroless chemically etched Si NWs show a tensile strength of 5.4 GPa. The developed MEMS devices and experimental techniques enable an alternative way of in-situ nanomechanical characterization based on electron microscopy. The design methodology and learning presented in this thesis would be useful to develop nano-tensile stages of other configurations with more advanced functions

    Remote Access and Computerized User Control of Robotic Micromanipulators

    Get PDF
    Nano- and micromanipulators are critical research tools in numerous fields including micro-manufacturing and disease study. Despite their importance, nano- and micromanipulation systems remain inaccessible to many groups due to price and lack of portability. An intuitive and remotely accessible manipulation system helps mitigate this access problem. Previously, optimal control hardware for single-probe manipulation and the effect of latency on user performance were not well understood. Remote access demands full computerization; graphical user interfaces with networking capabilities were developed to fulfill this requirement and allow the use of numerous hardware controllers. Virtual environments were created to simulate the use of a manipulator with full parametric control and measurement capabilities. Users completed simulated tasks with each device and were surveyed about their perceptions. User performance with a commercial manipulator controller was exceeded by performance with both a computer mouse and pen tablet. Latency was imposed within the virtual environment to study it’s effects and establish guidelines as to which latency ranges are acceptable for long-range remote manipulation. User performance began to degrade noticeably at 100 ms and severely at 400 ms and performance with the mouse degraded the least as latency increased. A computer vision system for analyzing carbon nanotube arrays was developed so the computation time could be compared to acceptable system latency. The system characterizes the arrays to a high degree of accuracy and most of the measurement types of obtainable fast enough for real-time analysis

    Automated Micromanipulation of Micro Objects

    Get PDF
    In recent years, research efforts in the development of Micro Electro Mechanical Systems, (MEMS) including microactuators and micromanipulators, have attracted a great deal of attention. The development of microfabrication techniques has resulted in substantial progress in the miniaturization of devices such as electronic circuits. However, the research in MEMS still lags behind in terms of the development of reliable tools for post-fabrication processes and the precise and dexterous manipulation of individual micro size objects. Current micromanipulation mechanisms are prone to high costs, a large footprint, and poor dexterity and are labour intensive. To overcome such, the research in this thesis is focused on the utilization of microactuators in micromanipulation. Microactuators are compliant structures. They undergo substantial deflection during micromanipulation due to the considerable surface micro forces. Their dominance in governing micromanipulation is so compelling that their effects should be considered in designing microactuators and microsensors. In this thesis, the characterization of the surface micro forces and automated micromanipulation are investigated. An inexpensive experimental setup is proposed as a platform to replace Atomic Force Microscopy (AFM) for analyzing the force characterization of micro scale components. The relationship between the magnitudes of the surface micro forces and the parameters such as the velocity of the pushing process, relative humidity, temperature, hydrophilicity of the substrate, and surface area are empirically examined. In addition, a precision automated micromanipulation system is realized. A class of artificial neural networks (NN) is devised to estimate the unmodelled micro forces during the controlled pushing of micro size object along a desired path. Then, a nonlinear controller is developed for the controlled pushing of the micro objects to guarantee the stability of the closed loop system in the Lyapunov sense. To validate the performance of the proposed controller, an experimental setup is designed. The application of the proposed controller is extended to precisely push several micro objects, each with different characteristics in terms of the surface micro forces governing the manipulation process. The proposed adaptive controller is capable of learning to adjust its weights effectively when the surface micro forces change under varying conditions. By using the controller, a fully automated sequential positioning of three micro objects on a flat substrate is performed. The results are compared with those of the identical sequential pushing by using a conventional linear controller. The results suggest that artificial NNs are a promising tool for the design of adaptive controllers to accurately perform the automated manipulation of multiple objects in the microscopic scale for microassembly

    Workshop on "Control issues in the micro / nano - world".

    No full text
    International audienceDuring the last decade, the need of systems with micro/nanometers accuracy and fast dynamics has been growing rapidly. Such systems occur in applications including 1) micromanipulation of biological cells, 2) micrassembly of MEMS/MOEMS, 3) micro/nanosensors for environmental monitoring, 4) nanometer resolution imaging and metrology (AFM and SEM). The scale and requirement of such systems present a number of challenges to the control system design that will be addressed in this workshop. Working in the micro/nano-world involves displacements from nanometers to tens of microns. Because of this precision requirement, environmental conditions such as temperature, humidity, vibration, could generate noise and disturbance that are in the same range as the displacements of interest. The so-called smart materials, e.g., piezoceramics, magnetostrictive, shape memory, electroactive polymer, have been used for actuation or sensing in the micro/nano-world. They allow high resolution positioning as compared to hinges based systems. However, these materials exhibit hysteresis nonlinearity, and in the case of piezoelectric materials, drifts (called creep) in response to constant inputs In the case of oscillating micro/nano-structures (cantilever, tube), these nonlinearities and vibrations strongly decrease their performances. Many MEMS and NEMS applications involve gripping, feeding, or sorting, operations, where sensor feedback is necessary for their execution. Sensors that are readily available, e.g., interferometer, triangulation laser, and machine vision, are bulky and expensive. Sensors that are compact in size and convenient for packaging, e.g., strain gage, piezoceramic charge sensor, etc., have limited performance or robustness. To account for these difficulties, new control oriented techniques are emerging, such as[d the combination of two or more ‘packageable' sensors , the use of feedforward control technique which does not require sensors, and the use of robust controllers which account the sensor characteristics. The aim of this workshop is to provide a forum for specialists to present and overview the different approaches of control system design for the micro/nano-world and to initiate collaborations and joint projects

    Modeling and Control of Piezoelectric Actuators

    Get PDF
    Piezoelectric actuators (PEAs) utilize the inverse piezoelectric effect to generate fine displacement with a resolution down to sub-nanometers and as such, they have been widely used in various micro- and nanopositioning applications. However, the modeling and control of PEAs have proven to be challenging tasks. The main difficulties lie in the existence of various nonlinear or difficult-to-model effects in PEAs, such as hysteresis, creep, and distributive vibration dynamics. Such effects can seriously degrade the PEA tracking control performances or even lead to instability. This raises a great need to model and control PEAs for improved performance. This research is aimed at developing novel models for PEAs and on this basis, developing model-based control schemes for the PEA tracking control taking into account the aforementioned nonlinear effects. In the first part of this research, a model of a PEA for the effects of hysteresis, creep, and vibration dynamics was developed. Notably, the widely-used Preisach hysteresis model cannot represent the one-sided hysteresis of PEAs. To overcome this shortcoming, a rate-independent hysteresis model based on a novel hysteresis operator modified from the Preisach hysteresis operator was developed, which was then integrated with the models of creep and vibration dynamics to form a comprehensive model for PEAs. For its validation, experiments were carried out on a commercially-available PEA and the results obtained agreed with those from model simulations. By taking into account the linear dynamics and hysteretic behavior of the PEA as well as the presliding friction between the moveable platform and the end-effector, a model of the piezoelectric-driven stick-slip (PDSS) actuator was also developed in the first part of the research. The effectiveness of the developed model was illustrated by the experiments on the PDSS actuator prototyped in the author's lab. In the second part of the research, control schemes were developed based on the aforementioned PEA models for tracking control of PEAs. Firstly, a novel PID-based sliding mode (PIDSM) controller was developed. The rational behind the use of a sliding mode (SM) control is that the SM control can effectively suppress the effects of matched uncertainties, while the PEA hysteresis, creep, and external load can be represented by a lumped matched uncertainty based on the developed model. To solve the chattering and steady-state problems, associated with the ideal SM control and the SM control with boundary layer (SMCBL), the novel PIDSM control developed in the present study replaces the switching control term in the ideal SM control schemes with a PID regulator. Experiments were carried out on a commercially-available PEA and the results obtained illustrate the effectiveness of the PIDSM controller, and its superiorities over other schemes of PID control, ideal SM control, and the SMCBL in terms of steady state error elimination, chattering suppression, and tracking error suppression. Secondly, a PIDSM observer was also developed based on the model of PEAs to provide the PIDSM controller with state estimates of the PEA. And the PIDSM controller and the PIDSM observer were combined to form an integrated control scheme (PIDSM observer-controller or PIDSMOC) for PEAs. The effectiveness of the PIDSM observer and the PIDSMOC were also validated experimentally. The superiority of the PIDSMOC over the PIDSM controller with σ-ÎČ filter control scheme was also analyzed and demonstrated experimentally. The significance of this research lies in the development of novel models for PEAs and PDSS actuators, which can be of great help in the design and control of such actuators. Also, the development of the PIDSM controller, the PIDSM observer, and their integrated form, i.e., PIDSMOC, enables the improved performance of tracking control of PEAs with the presence of various nonlinear or difficult-to-model effects
    corecore