258 research outputs found

    Lunar Ascent and Orbit Injection via Neighboring Optimal Guidance and Constrained Attitude Control

    Get PDF
    Future human or robotic missions to the Moon will require efficient ascent path and accurate orbit injection maneuvers, because the dynamical conditions at injection affect the subsequent phases of spaceflight. This research focuses on the original combination of two techniques applied to lunar ascent modules, i.e., (1) the recently introduced variable-time-domain neighboring optimal guidance (VTD-NOG), and (2) a constrained proportional-derivative (CPD) attitude control algorithm. VTD-NOG belongs to the class of feedback implicit guidance approaches aimed at finding the corrective control actions capable of maintaining the spacecraft sufficiently close to the reference trajectory. CPD pursues the desired attitude using thrust vector control while constraining the rate of the thrust deflection angle. The numerical results unequivocally demonstrate that the joint use of VTD-NOG and CPD represents an accurate and effective methodology for guidance and control of lunar ascent path and orbit injection in the presence of nonnominal flight conditions

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Application of multilevel control techniques to classes of distributed parameter plants

    Get PDF
    This study concerns the application of a combination of multilevel hierarchical systems analysis techniques and Pontryagin\u27s minimum principle (multilevel control) to the problem of controlling optimally two classes of dynamic distributed parameter plants representing concentrations balances in streams, rivers and estuaries. The concentrations treated in this study are those deemed the most effective indicators of water quality, dissolved oxygen (DO) and biochemical oxygen demand (BOD). One class of plants treated in this study consists of linear continuous distributed parameter plants represented mathematically by sets of simultaneous partial differential equations. Optimal control of a plant of this class is initiated by applying spatial discretization followed by a combination of multilevel techniques and Pontryagin\u27s minimum principle for lumped parameter systems. This approach reduces the original problem of optimally controlling a distributed parameter plant to a hierarchy of subproblems comprised of ordinary differential and algebraic equations that can be solved iteratively. A general two-dimensional plant representative of a class of two-step discrete dynamic distributed parameter plants is derived from mass balances at the faces of a model of a volume element of a waterway. The resulting set of simultaneous finite-difference equations represents dynamic balances of concentrations at a finite number of spatial points in a reach of a waterway at selected time instants. Application of Pontryagin\u27s minimum principle for discrete systems in conjunction with multilevel hierarchical systems analysis techniques reduces the problem of controlling such a plant optimally to a hierarchy of subproblems to be solved iteratively. Implicit in the application of optimal control to a plant is the selection of a suitable performance index functional with which to measure the relative optimality of each solution iteration. A variety of performance indices based upon physical considerations is utilized in conjunction with several different control modes for a number of plants representative of the two classes treated in this study. Subproblem hierarchies corresponding to both continuous and discrete distributed parameter plants representing concentrations balances in waterway reaches subject to multilevel optimal control are aggregated into super hierarchies. These super hierarchies possess at least one more level than those corresponding to the single reaches and represent, in this context, the concentrations balances in multireach or regional portions of waterways. Sufficient boundary, initial and final conditions are presented for numerical solution of the subproblem hierarchies developed in this study. Flow charts for the corresponding digital computer programs also are depicted. A proof of consistency between the ordinary differential equations of the spatially discretized plant and the partial differential equations of the continuous distributed parameter plant that it approximates is developed for a representative plant. A proof of convergence of the solutions of the equations of the same spatially discretized plant also is developed. Stability analyses are conducted for representative continuous and discrete distributed parameter plants. The optimal control of the spatially discretized continuous distributed parameter plant is formulated as a linear regulator problem and the associated performance index is utilized as a Liapunov function. The optimal control of the discrete distributed parameter plant with time-varying mean volume flow rate is formulated as the problem of optimal control of a nonstationary system which is treated by transforming the nonstationary system to an equivalent stationary system. The z-transform is applied to the finite-difference equations of the plant to facilitate evaluation of the effect of the presence of transport lags. The relationship between structural characteristics and computational efficiency of subproblem hierarchies is analyzed. Multilevel hierarchical systems analysis techniques are applied to the sensitivity analysis of a spatially discretized distributed parameter plant subject to multilevel optimal control. The combination of discretization and multilevel techniques is shown to reduce the generation of trajectory sensitivity coefficients for an optimally controlled distributed parameter plant to generation of trajectory sensitivity coefficients for a series of lumped parameter plants under optimal control. A normalized performance index sensitivity function also is developed for the same plant. Numerical results of multilevel optimization are presented for various control modes and configurations applied to plants representing: single reaches of a tidal river, four contiguous reaches of a tidal river, six contiguous reaches of a tidal river with taper and waste dischargers, and single reaches of an estuary. The study culminates with the application of one of the single reach subproblem hierarchies for a discrete distributed parameter plant under multilevel optimal control and multilevel hierarchical systems analysis techniques to the problem of minimizing total treatment cost for a multireach portion of a tidal river. This demonstrates the feasibility and efficiency of the multilevel approach to the solution of dynamic systems optimization problems of regional scope

    Conditions for State and Control Constraint Activation in Coordination of Connected and Automated Vehicles

    Full text link
    Connected and automated vehicles (CAVs) provide the most intriguing opportunity to reduce pollution, energy consumption, and travel delays. In earlier work, we addressed the optimal coordination of CAVs using Hamiltonian analysis. In this paper, we investigate the nature of the unconstrained problem and provide conditions under which the state and control constraints become active. We derive a closed-form analytical solution of the constrained optimization problem and evaluate the solution using numerical simulation
    • …
    corecore