266 research outputs found

    Delay analysis of a two-class batch-service queue with class-dependent variable server capacity

    Get PDF
    In this paper, we analyse the delay of a random customer in a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common single-server first-come-first-served queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the length of a sequence of same-class customers. This type of batch server can be found in telecommunications systems and production environments. We first determine the steady state partial probability generating function of the queue occupancy at customer arrival epochs. Using a spectral decomposition technique, we obtain the steady state probability generating function of the delay of a random customer. We also show that the distribution of the delay of a random customer corresponds to a phase-type distribution. Finally, some numerical examples are given that provide further insight in the impact of asymmetry and variance in the arrival process on the number of customers in the system and the delay of a random customer

    Capacity Allocation for Clouds with Parallel Processing, Batch Arrivals, and Heterogeneous Service Requirements

    Full text link
    Problem Definition: Allocating sufficient capacity to cloud services is a challenging task, especially when demand is time-varying, heterogeneous, contains batches, and requires multiple types of resources for processing. In this setting, providers decide whether to reserve portions of their capacity to individual job classes or to offer it in a flexible manner. Methodology/results: In collaboration with Huawei Cloud, a worldwide provider of cloud services, we propose a heuristic policy that allocates multiple types of resources to jobs and also satisfies their pre-specified service level agreements (SLAs). We model the system as a multi-class queueing network with parallel processing and multiple types of resources, where arrivals (i.e., virtual machines and containers) follow time-varying patterns and require at least one unit of each resource for processing. While virtual machines leave if they are not served immediately, containers can join a queue. We introduce a diffusion approximation of the offered load of such system and investigate its fidelity as compared to the observed data. Then, we develop a heuristic approach that leverages this approximation to determine capacity levels that satisfy probabilistic SLAs in the system with fully flexible servers. Managerial Implications: Using a data set of cloud computing requests over a representative 8-day period from Huawei Cloud, we show that our heuristic policy results in a 20% capacity reduction and better service quality as compared to a benchmark that reserves resources. In addition, we show that the system utilization induced by our policy is superior to the benchmark, i.e., it implies less idling of resources in most instances. Thus, our approach enables cloud operators to both reduce costs and achieve better performance

    Performance of a Serial-Batch Processor System with Incompatible Job Families under Simple Control Policies

    Get PDF
    A typical example of a batch processor is the diffusion furnace used in wafer fabrication facilities (otherwise known as wafer fabs). In diffusion, silicon wafers are placed inside the furnace, and dopant is flown through the wafers via nitrogen gas. The higher the temperature, the faster the dopant penetrates the wafer surface. Then, a thin layer of silicon dioxide is grown, to help the dopant diffuse into the silicon. This operation can take 10 hours or more to finish processing, as compared to one or two hours for other wafer fab operations, according to Uzsoy [8]. Diffusion furnaces typically can process six to eight lots concurrently; we call the lots processed concurrently a batch. The quantity of lots loaded into the furnace does not affect the processing time. Only lots that require the same chemical recipe and temperature may be batched together at the diffusion furnace. We wish to control the production of a manufacturing system, comprised of a serial processor feeding the batch processor. The system produces different job types, and each job can only be batched together with jobs of the same type. More specifically, we explore the idea of controlling the production of the serial processor, based on the wip found in front of the batch processor. We evaluate the performance of our manufacturing system under several simple control policies under a range of loading conditions and determine which control policies perform better under which conditions. It is hoped that the results obtained from this small system could be extended to larger systems involving a batch processor, with particular emphasis placed on the applicability of such policies in wafer fabrication.Singapore-MIT Alliance (SMA

    Performance Evaluation of Stochastic Multi-Echelon Inventory Systems: A Survey

    Get PDF
    Globalization, product proliferation, and fast product innovation have significantly increased the complexities of supply chains in many industries. One of the most important advancements of supply chain management in recent years is the development of models and methodologies for controlling inventory in general supply networks under uncertainty and their widefspread applications to industry. These developments are based on three generic methods: the queueing-inventory method, the lead-time demand method and the flow-unit method. In this paper, we compare and contrast these methods by discussing their strengths and weaknesses, their differences and connections, and showing how to apply them systematically to characterize and evaluate various supply networks with different supply processes, inventory policies, and demand processes. Our objective is to forge links among research strands on different methods and various network topologies so as to develop unified methodologies.Masdar Institute of Science and TechnologyNational Science Foundation (U.S.) (NSF Contract CMMI-0758069)National Science Foundation (U.S.) (Career Award CMMI-0747779)Bayer Business ServicesSAP A

    Optimal Control of Parallel Queues for Managing Volunteer Convergence

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163497/2/poms13224.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163497/1/poms13224_am.pd

    Analysis of finite-buffer state-dependent bulk queues

    Get PDF
    <p>In this paper, we consider a general state-dependent finite-buffer bulk queue in which the rates and batch sizes of arrivals and services are allowed to depend on the number of customers in queue and service batch sizes. Such queueing systems have rich applications in manufacturing, service operations, computer and telecommunication systems. Interesting examples include batch oven processes in the aircraft and semiconductor industry; serving of passengers by elevators, shuttle buses, and ferries; and congestion control mechanisms to regulate transmission rates in packet-switched communication networks. We develop a unifying method to study the performance of this general class of finite-buffer state-dependent bulk queueing systems. For this purpose, we use semi-regenerative analysis to develop a numerically stable method for calculating the limiting probability distribution of the queue length process. Based on the limiting probabilities, we present various performance measures for evaluating admission control and batch service policies, such as the loss probability for an arriving group of customers and for individual customers within a group. We demonstrate our method by means of numerical examples.</p>

    Steady-State Analysis and Online Learning for Queues with Hawkes Arrivals

    Full text link
    We investigate the long-run behavior of single-server queues with Hawkes arrivals and general service distributions and related optimization problems. In detail, utilizing novel coupling techniques, we establish finite moment bounds for the stationary distribution of the workload and busy period processes. In addition, we are able to show that, those queueing processes converge exponentially fast to their stationary distribution. Based on these theoretic results, we develop an efficient numerical algorithm to solve the optimal staffing problem for the Hawkes queues in a data-driven manner. Numerical results indicate a sharp difference in staffing for Hawkes queues, compared to the classic GI/GI/1 model, especially in the heavy-traffic regime
    • 

    corecore