117,161 research outputs found

    Optimal control of a class of reaction-diffusion systems

    Get PDF
    The optimal control of a system of nonlinear reaction-diffusion equations is considered that covers several important equations of mathematical physics. In particular equations are covered that develop traveling wave fronts, spiral waves, scroll rings, or propagating spot solutions. Well-posedness of the system and differentiability of the control-to-state mapping are proved. Associated optimal control problems with pointwise constraints on the control and the state are discussed. The existence of optimal controls is proved under weaker assumptions than usually expected. Moreover, necessary first-order optimality conditions are derived. Several challenging numerical examples are presented that include in particular an application of pointwise state constraints where the latter prevent a moving localized spot from hitting the domain boundary.Eduardo Casas was partially supported by the Spanish Ministerio de Economía, Industria y Competitividad under Projects MTM2014-57531-P and MTM2017-83185-P. Christopher Ryll and Fredi Tröltzsch are supported by DFG in the framework of the Collaborative Research Center SFB 910, Project B6

    Minimal time sliding mode control for evolution equations in Hilbert spaces

    Full text link
    This work is concerned with the time optimal control problem for evolution equations in Hilbert spaces. The attention is focused on the maximum principle for the time optimal controllers having the dimension smaller that of the state system, in particular for minimal time sliding mode controllers, which is one of the novelties of this paper. We provide the characterization of the controllers by the optimality conditions determined for some general cases. The proofs rely on a set of hypotheses meant to cover a large class of applications. Examples of control problems governed by parabolic equations with potential and drift terms, porous media equation or reaction-diffusion systems with linear and nonlinear perturbations, describing real world processes, are presented at the end.Comment: 39 pages, no figure

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie
    • …
    corecore