4,404 research outputs found

    Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

    Full text link
    Multiclass open queueing networks find wide applications in communication, computer and fabrication networks. Often one is interested in steady-state performance measures associated with these networks. Conceptually, under mild conditions, a regenerative structure exists in multiclass networks, making them amenable to regenerative simulation for estimating the steady-state performance measures. However, typically, identification of a regenerative structure in these networks is difficult. A well known exception is when all the interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a regenerative structure. In this paper, we consider networks where the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded regenerative structure in the Markov process. We show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals. We also show that amongst all such interarrival time decompositions, the one with the largest mean exponential component minimizes the asymptotic variance of the standard deviation estimator.Comment: A preliminary version of this paper will appear in Proceedings of Winter Simulation Conference, Washington, DC, 201

    Exponential inequalities for unbounded functions of geometrically ergodic Markov chains. Applications to quantitative error bounds for regenerative Metropolis algorithms

    Full text link
    The aim of this note is to investigate the concentration properties of unbounded functions of geometrically ergodic Markov chains. We derive concentration properties of centered functions with respect to the square of the Lyapunov's function in the drift condition satisfied by the Markov chain. We apply the new exponential inequalities to derive confidence intervals for MCMC algorithms. Quantitative error bounds are providing for the regenerative Metropolis algorithm of [5]

    Wide sense one-dependent processes with embedded Harris chains and their applications in inventory management

    Get PDF
    In this paper we consider stochastic processes with an embedded Harris chain. The embedded Harris chain describes the dependence structure of the stochastic process. That is, all the relevant information of the past is contained in the state of the embedded Harris chain. For these processes we proved a powerful reward theorem. Futher, we show how we can control these type of processes and give a formulation similar to semi-Markov decision processes. Finally we discuss a number of applications in inventory management.
    • …
    corecore