13,525 research outputs found

    Auction Mechanisms in Cloud/Fog Computing Resource Allocation for Public Blockchain Networks

    Full text link
    As an emerging decentralized secure data management platform, blockchain has gained much popularity recently. To maintain a canonical state of blockchain data record, proof-of-work based consensus protocols provide the nodes, referred to as miners, in the network with incentives for confirming new block of transactions through a process of "block mining" by solving a cryptographic puzzle. Under the circumstance of limited local computing resources, e.g., mobile devices, it is natural for rational miners, i.e., consensus nodes, to offload computational tasks for proof of work to the cloud/fog computing servers. Therefore, we focus on the trading between the cloud/fog computing service provider and miners, and propose an auction-based market model for efficient computing resource allocation. In particular, we consider a proof-of-work based blockchain network. Due to the competition among miners in the blockchain network, the allocative externalities are particularly taken into account when designing the auction mechanisms. Specifically, we consider two bidding schemes: the constant-demand scheme where each miner bids for a fixed quantity of resources, and the multi-demand scheme where the miners can submit their preferable demands and bids. For the constant-demand bidding scheme, we propose an auction mechanism that achieves optimal social welfare. In the multi-demand bidding scheme, the social welfare maximization problem is NP-hard. Therefore, we design an approximate algorithm which guarantees the truthfulness, individual rationality and computational efficiency. Through extensive simulations, we show that our proposed auction mechanisms with the two bidding schemes can efficiently maximize the social welfare of the blockchain network and provide effective strategies for the cloud/fog computing service provider.Comment: 15 page

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure

    Budget-constrained Edge Service Provisioning with Demand Estimation via Bandit Learning

    Full text link
    Shared edge computing platforms, which enable Application Service Providers (ASPs) to deploy applications in close proximity to mobile users are providing ultra-low latency and location-awareness to a rich portfolio of services. Though ubiquitous edge service provisioning, i.e., deploying the application at all possible edge sites, is always preferable, it is impractical due to often limited operational budget of ASPs. In this case, an ASP has to cautiously decide where to deploy the edge service and how much budget it is willing to use. A central issue here is that the service demand received by each edge site, which is the key factor of deploying benefit, is unknown to ASPs a priori. What's more complicated is that this demand pattern varies temporally and spatially across geographically distributed edge sites. In this paper, we investigate an edge resource rental problem where the ASP learns service demand patterns for individual edge sites while renting computation resource at these sites to host its applications for edge service provisioning. An online algorithm, called Context-aware Online Edge Resource Rental (COERR), is proposed based on the framework of Contextual Combinatorial Multi-armed Bandit (CC-MAB). COERR observes side-information (context) to learn the demand patterns of edge sites and decides rental decisions (including where to rent the computation resource and how much to rent) to maximize ASP's utility given a limited budget. COERR provides a provable performance achieving sublinear regret compared to an Oracle algorithm that knows exactly the expected service demand of edge sites. Experiments are carried out on a real-world dataset and the results show that COERR significantly outperforms other benchmarks

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of economic and pricing theory for resource management in the evolving fifth generation (5G) wireless networks. The 5G wireless networks are envisioned to overcome existing limitations of cellular networks in terms of data rate, capacity, latency, energy efficiency, spectrum efficiency, coverage, reliability, and cost per information transfer. To achieve the goals, the 5G systems will adopt emerging technologies such as massive Multiple-Input Multiple-Output (MIMO), mmWave communications, and dense Heterogeneous Networks (HetNets). However, 5G involves multiple entities and stakeholders that may have different objectives, e.g., high data rate, low latency, utility maximization, and revenue/profit maximization. This poses a number of challenges to resource management designs of 5G. While the traditional solutions may neither efficient nor applicable, economic and pricing models have been recently developed and adopted as useful tools to achieve the objectives. In this paper, we review economic and pricing approaches proposed to address resource management issues in the 5G wireless networks including user association, spectrum allocation, and interference and power management. Furthermore, we present applications of economic and pricing models for wireless caching and mobile data offloading. Finally, we highlight important challenges, open issues and future research directions of applying economic and pricing models to the 5G wireless networks

    Making Availability as a Service in the Clouds

    Full text link
    Cloud computing has achieved great success in modern IT industry as an excellent computing paradigm due to its flexible management and elastic resource sharing. To date, cloud computing takes an irrepalceable position in our socioeconomic system and influences almost every aspect of our daily life. However, it is still in its infancy, many problems still exist.Besides the hotly-debated security problem, availability is also an urgent issue.With the limited power of availability mechanisms provided in present cloud platform, we can hardly get detailed availability information of current applications such as the root causes of availability problem,mean time to failure, etc. Thus a new mechanism based on deep avaliability analysis is neccessary and benificial.Following the prevalent terminology 'XaaS',this paper proposes a new win-win concept for cloud users and providers in term of 'Availability as a Service' (abbreviated as 'AaaS').The aim of 'AaaS' is to provide comprehensive and aimspecific runtime avaliabilty analysis services for cloud users by integrating plent of data-driven and modeldriven approaches. To illustrate this concept, we realize a prototype named 'EagleEye' with all features of 'AaaS'. By subscribing corresponding services in 'EagleEye', cloud users could get specific availability information of their applications deployed in cloud platform. We envision this new kind of service will be merged into the cloud management mechanism in the near future.Comment:

    Resource Allocation in a Network-Based Cloud Computing Environment: Design Challenges

    Full text link
    Cloud computing is an increasingly popular computing paradigm, now proving a necessity for utility computing services. Each provider offers a unique service portfolio with a range of resource configurations. Resource provisioning for cloud services in a comprehensive way is crucial to any resource allocation model. Any model should consider both computational resources and network resources to accurately represent and serve practical needs. Another aspect that should be considered while provisioning resources is energy consumption. This aspect is getting more attention from industry and governments parties. Calls of support for the green clouds are gaining momentum. With that in mind, resource allocation algorithms aim to accomplish the task of scheduling virtual machines on data center servers and then scheduling connection requests on the network paths available while complying with the problem constraints. Several external and internal factors that affect the performance of resource allocation models are introduced in this paper. These factors are discussed in detail and research gaps are pointed out. Design challenges are discussed with the aim of providing a reference to be used when designing a comprehensive energy aware resource allocation model for cloud computing data centers.Comment: To appear in IEEE Communications Magazine, November 201

    FASS: A Fairness-Aware Approach for Concurrent Service Selection with Constraints

    Full text link
    The increasing momentum of service-oriented architecture has led to the emergence of divergent delivered services, where service selection is meritedly required to obtain the target service fulfilling the requirements from both users and service providers. Despite many existing works have extensively handled the issue of service selection, it remains an open question in the case where requests from multiple users are performed simultaneously by a certain set of shared candidate services. Meanwhile, there exist some constraints enforced on the context of service selection, e.g. service placement location and contracts between users and service providers. In this paper, we focus on the QoS-aware service selection with constraints from a fairness aspect, with the objective of achieving max-min fairness across multiple service requests sharing candidate service sets. To be more specific, we study the problem of fairly selecting services from shared candidate sets while service providers are self-motivated to offer better services with higher QoS values. We formulate this problem as a lexicographical maximization problem, which is far from trivial to deal with practically due to its inherently multi-objective and discrete nature. A fairness-aware algorithm for concurrent service selection (FASS) is proposed, whose basic idea is to iteratively solve the single-objective subproblems by transforming them into linear programming problems. Experimental results based on real-world datasets also validate the effectiveness and practicality of our proposed approach.Comment: IEEE International Conference on Web Services (IEEE ICWS 2019), 9 page

    GreenDataFlow: Minimizing the Energy Footprint of Global Data Movement

    Full text link
    The global data movement over Internet has an estimated energy footprint of 100 terawatt hours per year, costing the world economy billions of dollars. The networking infrastructure together with source and destination nodes involved in the data transfer contribute to overall energy consumption. Although considerable amount of research has rendered power management techniques for the networking infrastructure, there has not been much prior work focusing on energy-aware data transfer solutions for minimizing the power consumed at the end-systems. In this paper, we introduce a novel application-layer solution based on historical analysis and real-time tuning called GreenDataFlow, which aims to achieve high data transfer throughput while keeping the energy consumption at the minimal levels. GreenDataFlow supports service level agreements (SLAs) which give the service providers and the consumers the ability to fine tune their goals and priorities in this optimization process. Our experimental results show that GreenDataFlow outperforms the closest competing state-of-the art solution in this area 50% for energy saving and 2.5x for the achieved end-to-end performance

    Optimized Portfolio Contracts for Bidding the Cloud

    Full text link
    Amazon EC2 provides two most popular pricing schemes--i) the {\em costly} on-demand instance where the job is guaranteed to be completed, and ii) the {\em cheap} spot instance where a job may be interrupted. We consider a user can select a combination of on-demand and spot instances to finish a task. Thus he needs to find the optimal bidding price for the spot-instance, and the portion of the job to be run on the on-demand instance. We formulate the problem as an optimization problem and seek to find the optimal solution. We consider three bidding strategies: one-time requests with expected guarantee and one-time requests with penalty for incomplete job and violating the deadline, and persistent requests. Even without a penalty on incomplete jobs, the optimization problem turns out to be non-convex. Nevertheless, we show that the portion of the job to be run on the on-demand instance is at most half. If the job has a higher execution time or smaller deadline, the bidding price is higher and vice versa. Additionally, the user never selects the on-demand instance if the execution time is smaller than the deadline. The numerical results illustrate the sensitivity of the effective portfolio to several of the parameters involved in the model. Our empirical analysis on the Amazon EC2 data shows that our strategies can be employed on the real instances, where the expected total cost of the proposed scheme decreases over 45\% compared to the baseline strategy
    corecore