314 research outputs found

    A simulation based approach on robust airline job pairing

    Get PDF
    Job paring, i.e. the composition of duty rosters from single activities, is an important part of the airline operations planning process. With labor costs being a major factor in an airline's cost structure, such personnel schedules have to ensure efficiency to be of practical relevance. At the same time they have to improve customer acceptance by offering best possible robustness, keeping inevitable local delays from spreading through the airline's flight network. In this paper we present a project currently in development which aims for generating robust personnel schedules for airline operations. The resulting tool set will allow us to effectively allocate flight personnel, using optimization and simulation techniques to generate and compare schedules with respect to their applicability and their demand for standby personnel, and to evaluate them prior to their implementation in the field. This paper begins with a short introduction of the airline planning process, focusing on the job pairing problem. We then describe our project, presenting our optimization and simulation approaches

    Optimisation-Based Solution Methods for Set Partitioning Models

    Get PDF

    Large-scale mixed integer optimization approaches for scheduling airline operations under irregularity

    Get PDF
    Perhaps no single industry has benefited more from advancements in computation, analytics, and optimization than the airline industry. Operations Research (OR) is now ubiquitous in the way airlines develop their schedules, price their itineraries, manage their fleet, route their aircraft, and schedule their crew. These problems, among others, are well-known to industry practitioners and academics alike and arise within the context of the planning environment which takes place well in advance of the date of departure. One salient feature of the planning environment is that decisions are made in a frictionless environment that do not consider perturbations to an existing schedule. Airline operations are rife with disruptions caused by factors such as convective weather, aircraft failure, air traffic control restrictions, network effects, among other irregularities. Substantially less work in the OR community has been examined within the context of the real-time operational environment. While problems in the planning and operational environments are similar from a mathematical perspective, the complexity of the operational environment is exacerbated by two factors. First, decisions need to be made in as close to real-time as possible. Unlike the planning phase, decision-makers do not have hours of time to return a decision. Secondly, there are a host of operational considerations in which complex rules mandated by regulatory agencies like the Federal Administration Association (FAA), airline requirements, or union rules. Such restrictions often make finding even a feasible set of re-scheduling decisions an arduous task, let alone the global optimum. The goals and objectives of this thesis are found in Chapter 1. Chapter 2 provides an overview airline operations and the current practices of disruption management employed at most airlines. Both the causes and the costs associated with irregular operations are surveyed. The role of airline Operations Control Center (OCC) is discussed in which serves as the real-time decision making environment that is important to understand for the body of this work. Chapter 3 introduces an optimization-based approach to solve the Airline Integrated Recovery (AIR) problem that simultaneously solves re-scheduling decisions for the operating schedule, aircraft routings, crew assignments, and passenger itineraries. The methodology is validated by using real-world industrial data from a U.S. hub-and-spoke regional carrier and we show how the incumbent approach can dominate the incumbent sequential approach in way that is amenable to the operational constraints imposed by a decision-making environment. Computational effort is central to the efficacy of any algorithm present in a real-time decision making environment such as an OCC. The latter two chapters illustrate various methods that are shown to expedite more traditional large-scale optimization methods that are applicable a wide family of optimization problems, including the AIR problem. Chapter 4 shows how delayed constraint generation and column generation may be used simultaneously through use of alternate polyhedra that verify whether or not a given cut that has been generated from a subset of variables remains globally valid. While Benders' decomposition is a well-known algorithm to solve problems exhibiting a block structure, one possible drawback is slow convergence. Expediting Benders' decomposition has been explored in the literature through model reformulation, improving bounds, and cut selection strategies, but little has been studied how to strengthen a standard cut. Chapter 5 examines four methods for the convergence may be accelerated through an affine transformation into the interior of the feasible set, generating a split cut induced by a standard Benders' inequality, sequential lifting, and superadditive lifting over a relaxation of a multi-row system. It is shown that the first two methods yield the most promising results within the context of an AIR model.PhDCommittee Co-Chair: Clarke, John-Paul; Committee Co-Chair: Johnson, Ellis; Committee Member: Ahmed, Shabbir; Committee Member: Clarke, Michael; Committee Member: Nemhauser, Georg

    Reliable reserve-crew scheduling for airlines

    Get PDF
    We study the practical setting in which regular- and reserve-crew schedules are dynamically maintained up to the day of executing the schedule. At each day preceding the execution of the schedule, disruptions occur due to sudden unavailability of personnel, making the planned regular and reserve-crew schedules infeasible for its execution day. This paper studies the fundamental question how to repair the schedules’ infeasibility in the days preceding the execution, taking into account labor regulations. We propose a robust repair strategy that maintains flexibility in order to cope with additional future disruptions. The flexibility in reserve-crew usage is explicitly considered through evaluating the expected shortfall of the reserve-crew schedule based on a Markov chain formulation. The core of our approach relies on iteratively solving a set-covering formulation, which we call the Robust Crew Recovery Problem, which encapsulates this flexibility notion for reserve crew usage. A tailored branch-and-price algorithm is developed for solving the Robust Crew Recovery Problem to optimality. The corresponding pricing problem is efficiently solved by a newly developed pulse algorithm. Based on actual data from a medium-sized hub-and-spoke airline, we show that embracing our approach leads to fewer flight cancellations and fewer last-minute alterations, compared to repairing disrupted schedules without considering our robust measure.</p
    corecore