4,424 research outputs found

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described

    Free spectral range electrical tuning of a high quality on-chip microcavity

    Full text link
    Reconfigurable photonic circuits have applications ranging from next-generation computer architectures to quantum networks, coherent radar and optical metamaterials. However, complete reconfigurability is only currently practical on millimetre-scale device footprints. Here, we overcome this barrier by developing an on-chip high quality microcavity with resonances that can be electrically tuned across a full free spectral range (FSR). FSR tuning allows resonance with any source or emitter, or between any number of networked microcavities. We achieve it by integrating nanoelectronic actuation with strong optomechanical interactions that create a highly strain-dependent effective refractive index. This allows low voltages and sub-nanowatt power consumption. We demonstrate a basic reconfigurable photonic network, bringing the microcavity into resonance with an arbitrary mode of a microtoroidal optical cavity across a telecommunications fibre link. Our results have applications beyond photonic circuits, including widely tuneable integrated lasers, reconfigurable optical filters for telecommunications and astronomy, and on-chip sensor networks.Comment: Main text: 7 pages, 3 figures. Supplementary information: 7 pages, 9 figure

    Video Compression from the Hardware Perspective

    Get PDF

    Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory

    Full text link
    Photonic entanglement source and quantum memory are two basic building blocks of linear-optical quantum computation and long-distance quantum communication. In the past decades, intensive researches have been carried out, and remarkable progress, particularly based on the spontaneous parametric down-converted (SPDC) entanglement source and atomic ensembles, has been achieved. Currently, an important task towards scalable quantum information processing (QIP) is to efficiently write and read entanglement generated from a SPDC source into and out of an atomic quantum memory. Here we report the first experimental realization of a quantum interface by building a 5 MHz frequency-uncorrelated SPDC source and reversibly mapping the generated entangled photons into and out of a remote optically thick cold atomic memory using electromagnetically induced transparency. The frequency correlation between the entangled photons is almost fully eliminated with a suitable pump pulse. The storage of a triggered single photon with arbitrary polarization is shown to reach an average fidelity of 92% for 200 ns storage time. Moreover, polarization-entangled photon pairs are prepared, and one of photons is stored in the atomic memory while the other keeps flying. The CHSH Bell's inequality is measured and violation is clearly observed for storage time up to 1 microsecond. This demonstrates the entanglement is stored and survives during the storage. Our work establishes a crucial element to implement scalable all-optical QIP, and thus presents a substantial progress in quantum information science.Comment: 28 pages, 4 figures, 1 tabl

    Integration of FAPEC as data compressor stage in a SpaceFibre link

    Get PDF
    SpaceFibre is a new technology for use onboard spacecraft that provides point-to-point and networked interconnections at 3.125 Gbits/s in flight qualified technology. SpaceFibre is an European Space Agency (ESA) initiative and will substitute the ubiquitous SpaceWire for high speed applications in space. FAPEC is a lossless data compression algorithm that typically offers better ratios than the CCSDS 121.0 Lossless Data Compression Recommendation on realistic data sets. FAPEC was designed for space communications, where requirements are very strong in terms of energy consumption and efficiency. In this project we have demonstrated that FAPEC can be easily integrated on top of SpaceFibre to reduce the amount of information that the spacecraft network has to deal with. The integration of FAPEC with SpaceFibre has successfully been validated in a representative FPGA platform. In the developed design FAPEC operated at ~12 Msamples/s (~200 Mbit/s) using a Xilinx Spartan-6 but it is expected to reach Gbit/s speeds with some additional work. The speed of the algorithm has been improved by a factor 6 while the resource usage remains low, around 2% of a Xilinx Virtex-5QV or a Microsemi RTG4. The combination of these two technologies can help to reduce the large amounts of data generated by some satellite instruments in a transparent way, without the need of user intervention, and to provide a solution to the increasing data volumes in spacecrafts. Consequently the combination of FAPEC with SpaceFibre can help to save mass, power consumption and reduce system complexity.SpaceFibre es una nueva tecnología para uso embarcado en satélites que proporciona conexiones punto a punto y de red a 3.125 Gbit/s en tecnología calificada para espacio. SpaceFibre es una iniciativa de la Agencia Espacial Europea (ESA) y sustituirá al popular SpaceWire en aplicaciones espaciales de alta velocidad. FAPEC es un algoritmo de compresión sin pérdidas que normalmente ofrece relaciones de compresión para conjuntos de datos realistas mejores que las de la recomendación CCSDS 121.0. FAPEC ha sido diseñado para las comunicaciones espaciales, donde las restricciones de consumo de energía y eficiencia son muy fuertes. En este proyecto hemos demostrado que FAPEC puede ser integrado fácilmente con SpaceFibre para reducir la cantidad de información que la red del satélite tiene que procesar. La integración de FAPEC con SpaceFibre ha sido validada con éxito en una plataforma FPGA representativa. En el diseño desarrollado, FAPEC funciona a ~12 Mmuestras/s (~200 Mbit/s) usando una Xilinx Spartan-6 pero se espera que alcance velocidades de Gbit/s con un poco más de trabajo. La velocidad del algoritmo se ha mejorado un factor 6 mientras que el uso de recursos continua siendo bajo, alrededor de un 2% de una Xilinx Virtex-5QV o Microsemi RTG4. La combinación de estas dos tecnologías puede ayudar a reducir las grandes cantidades de datos generados por los instrumentos de los satélites de una manera transparente, sin necesidad de una intervención por parte del usuario, y de proporcionar una solución al continuo incremento de datos generados. En consecuencia, la combinación de FAPEC y SpaceFibre puede ayudar a ahorrar masa y consumo de energía, y reducir la complejidad de los sistemas.SpaceFibre és una nova tecnologia per a ús embarcat en satèl·lits que proporciona connexions punt a punt i de xarxa a 3.125 Gbit/s en tecnologia qualificada per espai. SpaceFibre és una iniciativa de l'Agència Espacial Europea (ESA) i substituirà el popular SpaceWire en aplicacions espacials d'alta velocitat. FAPEC és un algorisme de compressió sense pèrdues que normalment ofereix relacions de compressió per a conjunts de dades realistes millors que les de la recomanació CCSDS 121.0. FAPEC ha estat dissenyat per a les comunicacions espacials, on les restriccions de consum d'energia i eficiència són molt fortes. En aquest projecte hem demostrat que FAPEC pot ser integrat fàcilment amb SpaceFibre per reduir la quantitat d'informació que la xarxa del satèl·lit ha de processar. La integració de FAPEC amb SpaceFibre ha estat validada amb èxit en una plataforma FPGA representativa. En el disseny desenvolupat, FAPEC funciona a ~12 Mmostres/s (~200 Mbit/s) utilitzant una Xilinx Spartan-6 però s'espera que arribi velocitats de Gbit/s amb una mica més de feina. La velocitat de l'algorisme s'ha millorat un factor 6 mentre que l'ús de recursos continua sent baix, al voltant d'un 2% d'una Xilinx Virtex-5QV o Microsemi RTG4. La combinació d'aquestes dues tecnologies pot ajudar a reduir les grans quantitats de dades generades pels instruments dels satèl·lits d'una manera transparent, sense necessitat d'una intervenció per part de l'usuari, i de proporcionar una solució al continu increment de dades generades. En conseqüència, la combinació de FAPEC i SpaceFibre pot ajudar a estalviar massa i consum d'energia, i reduir la complexitat dels sistemes

    CEPRAM: Compression for Endurance in PCM RAM

    Get PDF
    We deal with the endurance problem of Phase Change Memories (PCM) by proposing Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the lifespan of PCM-based main memory through compression. We introduce a total of three compression schemes based on already existent schemes, but targeting compression for PCM-based systems. We do a two-level evaluation. First, we quantify the performance of the compression, in terms of compressed size, bit-flips and how they are affected by errors. Next, we simulate these parameters in a statistical simulator to study how they affect the endurance of the system. Our simulation results reveal that our technique, which is built on top of Error Correcting Pointers (ECP) but using a high-performance cache-oriented compression algorithm modified to better suit our purpose, manages to further extend the lifetime of the memory system. In particular, it guarantees that at least half of the physical pages are in usable condition for 25% longer than ECP, which is slightly more than 5% more than a scheme that can correct 16 failures per block

    SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Get PDF
    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established
    • …
    corecore