306,949 research outputs found

    Convenient Multiple Directions of Stratification

    Full text link
    This paper investigates the use of multiple directions of stratification as a variance reduction technique for Monte Carlo simulations of path-dependent options driven by Gaussian vectors. The precision of the method depends on the choice of the directions of stratification and the allocation rule within each strata. Several choices have been proposed but, even if they provide variance reduction, their implementation is computationally intensive and not applicable to realistic payoffs, in particular not to Asian options with barrier. Moreover, all these previously published methods employ orthogonal directions for multiple stratification. In this work we investigate the use of algorithms producing convenient directions, generally non-orthogonal, combining a lower computational cost with a comparable variance reduction. In addition, we study the accuracy of optimal allocation in terms of variance reduction compared to the Latin Hypercube Sampling. We consider the directions obtained by the Linear Transformation and the Principal Component Analysis. We introduce a new procedure based on the Linear Approximation of the explained variance of the payoff using the law of total variance. In addition, we exhibit a novel algorithm that permits to correctly generate normal vectors stratified along non-orthogonal directions. Finally, we illustrate the efficiency of these algorithms in the computation of the price of different path-dependent options with and without barriers in the Black-Scholes and in the Cox-Ingersoll-Ross markets.Comment: 21 pages, 11 table

    Effective Evaluation using Logged Bandit Feedback from Multiple Loggers

    Full text link
    Accurately evaluating new policies (e.g. ad-placement models, ranking functions, recommendation functions) is one of the key prerequisites for improving interactive systems. While the conventional approach to evaluation relies on online A/B tests, recent work has shown that counterfactual estimators can provide an inexpensive and fast alternative, since they can be applied offline using log data that was collected from a different policy fielded in the past. In this paper, we address the question of how to estimate the performance of a new target policy when we have log data from multiple historic policies. This question is of great relevance in practice, since policies get updated frequently in most online systems. We show that naively combining data from multiple logging policies can be highly suboptimal. In particular, we find that the standard Inverse Propensity Score (IPS) estimator suffers especially when logging and target policies diverge -- to a point where throwing away data improves the variance of the estimator. We therefore propose two alternative estimators which we characterize theoretically and compare experimentally. We find that the new estimators can provide substantially improved estimation accuracy.Comment: KDD 201

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Metamodel-based importance sampling for structural reliability analysis

    Full text link
    Structural reliability methods aim at computing the probability of failure of systems with respect to some prescribed performance functions. In modern engineering such functions usually resort to running an expensive-to-evaluate computational model (e.g. a finite element model). In this respect simulation methods, which may require 103−610^{3-6} runs cannot be used directly. Surrogate models such as quadratic response surfaces, polynomial chaos expansions or kriging (which are built from a limited number of runs of the original model) are then introduced as a substitute of the original model to cope with the computational cost. In practice it is almost impossible to quantify the error made by this substitution though. In this paper we propose to use a kriging surrogate of the performance function as a means to build a quasi-optimal importance sampling density. The probability of failure is eventually obtained as the product of an augmented probability computed by substituting the meta-model for the original performance function and a correction term which ensures that there is no bias in the estimation even if the meta-model is not fully accurate. The approach is applied to analytical and finite element reliability problems and proves efficient up to 100 random variables.Comment: 20 pages, 7 figures, 2 tables. Preprint submitted to Probabilistic Engineering Mechanic

    Importance Tempering

    Full text link
    Simulated tempering (ST) is an established Markov chain Monte Carlo (MCMC) method for sampling from a multimodal density π(Ξ)\pi(\theta). Typically, ST involves introducing an auxiliary variable kk taking values in a finite subset of [0,1][0,1] and indexing a set of tempered distributions, say πk(Ξ)∝π(Ξ)k\pi_k(\theta) \propto \pi(\theta)^k. In this case, small values of kk encourage better mixing, but samples from π\pi are only obtained when the joint chain for (Ξ,k)(\theta,k) reaches k=1k=1. However, the entire chain can be used to estimate expectations under π\pi of functions of interest, provided that importance sampling (IS) weights are calculated. Unfortunately this method, which we call importance tempering (IT), can disappoint. This is partly because the most immediately obvious implementation is na\"ive and can lead to high variance estimators. We derive a new optimal method for combining multiple IS estimators and prove that the resulting estimator has a highly desirable property related to the notion of effective sample size. We briefly report on the success of the optimal combination in two modelling scenarios requiring reversible-jump MCMC, where the na\"ive approach fails.Comment: 16 pages, 2 tables, significantly shortened from version 4 in response to referee comments, to appear in Statistics and Computin
    • 

    corecore