2,102 research outputs found

    On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils

    Full text link
    Underwater magnetic induction communications (UWMICs) provide a low-power and high-throughput solution for autonomous underwater vehicles (AUVs), which are envisioned to explore and monitor the underwater environment. UWMIC with tri-axis coils increases the reliability of the wireless channel by exploring the coil orientation diversity. However, the UWMIC channel is different from typical fading channels and the mutual inductance information (MII) is not always available. It is not clear the performance of the tri-axis coil MIMO without MII. Also, its performances with multiple users have not been investigated. In this paper, we analyze the reliability and multiplexing gain of UWMICs with tri-axis coils by using coil selection. We optimally select the transmit and receive coils to reduce the computation complexity and power consumption and explore the diversity for multiple users. We find that without using all the coils and MII, we can still achieve reliability. Also, the multiplexing gain of UWMIC without MII is 5dB smaller than typical terrestrial fading channels. The results of this paper provide a more power-efficient way to use UWMICs with tri-axis coils

    Beamforming for Magnetic Induction based Wireless Power Transfer Systems with Multiple Receivers

    Full text link
    Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.Comment: This paper has been accepted for presentation at IEEE GLOBECOM 2015. It has 7 pages and 5 figure

    Multi phase system for metal disc induction heating: modelling and RMS current control

    Get PDF
    This paper presents a multi phase induction system modelling for a metal disc heating and further industrial applications such as hot strip mill. An original architecture, with three concentric inductors supplied by three resonant current inverters leads to a reduced element system, without any coupling transformers, phase loop, mobile screens or mobile magnetic cores as it could be found in classical solutions. A simulation model is built, based on simplified equivalent models of electric and thermal phenomena. It takes into account data extracted from Flux2D® finite element software, concerning the energy transfer between the inductor currents and the piece to be heated. It is implemented in a versatile software PSim, initially dedicated to power electronic. An optimization procedure calculates the optimal supply currents in the inverters in order to obtain a desired power density profile in the work piece. The paper deals with The simulated and experimental results are compared in open-loop and closed loop. The paper ends with a current control method which sets RMS inductor currents in continuous and digital conditions

    Optimal design of switched reluctance motors

    Get PDF
    The fundamental theory of the switched reluctance motor is presented with a number of new equations. It is used to show how the practical development of a design calculation should proceed, and this leads to a discussion of physical characteristics required to achieve satisfactory performance and to reduce acoustic noise. The paper makes a few generic observations on the characteristics of successful products that use switched reluctance motors. It is written at a basic engineering level and makes no attempt to apply sophisticated optimization theory

    Fault-Tolerant Control of a Flux-switching Permanent Magnet Synchronous Machine

    Get PDF
    Je jasné, že nejúspěšnější konstrukce zahrnuje postup vícefázového řízení, ve kterém každá fáze může být považována za samostatný modul. Provoz kterékoliv z jednotek musí mít minimální vliv na ostatní, a to tak, že v případě selhání jedné jednotky ostatní mohou být v provozu neovlivněny. Modulární řešení vyžaduje minimální elektrické, magnetické a tepelné ovlivnění mezi fázemi řízení (měniče). Synchronní stroje s pulzním tokem a permanentními magnety se jeví jako atraktivní typ stroje, jejíž přednostmi jsou vysoký kroutící moment, jednoduchá a robustní konstrukce rotoru a skutečnost, že permanentní magnety i cívky jsou umístěny společně na statoru. FS-PMSM jsou poměrně nové typy střídavého stroje stator-permanentní magnet, které představují významné přednosti na rozdíl od konvenčních rotorů - velký kroutící moment, vysoký točivý moment, v podstatě sinusové zpětné EMF křivky, zároveň kompaktní a robustní konstrukce díky umístění magnetů a vinutí kotvy na statoru. Srovnání výsledků mezi FS-PMSM a klasickými motory na povrchu upevněnými PM (SPM) se stejnými parametry ukazuje, že FS-PMSM vykazuje větší vzduchové mezery hustoty toku, vyšší točivý moment na ztráty v mědi, ale také vyšší pulzaci díky reluktančnímu momentu. Pro stroje buzené permanentními magnety se jedná o tradiční rozpor mezi požadavkem na vysoký kroutící moment pod základní rychlostí (oblast konstantního momentu) a provozem nad základní rychlostí (oblast konstantního výkonu), zejména pro aplikace v hybridních vozidlech. Je předložena nová topologie synchronního stroje s permanentními magnety a spínaným tokem odolného proti poruchám, která je schopná provozu během vinutí naprázdno a zkratovaného vinutí i poruchách měniče. Schéma je založeno na dvojitě vinutém motoru napájeném ze dvou oddělených vektorově řízených napěťových zdrojů. Vinutí jsou uspořádána takovým způsobem, aby tvořila dvě nezávislé a oddělené sady. Simulace a experimentální výzkum zpřesní výkon během obou scénářů jak za normálního provozu, tak za poruch včetně zkratových závad a ukáží robustnost pohonu za těchto podmínek. Tato práce byla publikována v deseti konferenčních příspěvcích, dvou časopisech a knižní kapitole, kde byly představeny jak topologie pohonu a aplikovaná řídící schémata, tak analýzy jeho schopnosti odolávat poruchám.It has become clear that the most successful design approach involves a multiple phase drive in which each phase may be regarded as a single-module. The operation of any one module must have minimal impact upon the others, so that in the event of that module failing the others can continue to operate unaffected. The modular approach requires that there should be minimal electrical, magnetic and thermal interaction between phases of the drive. Flux-Switching permanent magnet synchronous machines (FS-PMSM) have recently emerged as an attractive machine type virtue of their high torque densities, simple and robust rotor structure and the fact that permanent magnets and coils are both located on the stator. Flux-switching permanent magnet (FS-PMSM) synchronous machines are a relatively new topology of stator PM brushless machine. They exhibit attractive merits including the large torque capability and high torque (power) density, essentially sinusoidal back-EMF waveforms, as well as having a compact and robust structure due to both the location of magnets and armature windings in the stator instead of the rotor as those in the conventional rotor-PM machines. The comparative results between a FS-PMSM and a traditional surface-mounted PM (SPM) motor having the same specifications reveal that FS-PMSM exhibits larger air-gap flux density, higher torque per copper loss, but also a higher torque ripple due to cogging -torque. However, for solely permanent magnets excited machines, it is a traditional contradiction between the requests of high torque capability under the base-speed (constant torque region) and wide speed operation above the base speed (constant power region) especially for hybrid vehicle applications. A novel fault-tolerant FS-PMSM drive topology is presented, which is able to operate during open- and short-circuit winding and converter faults. The scheme is based on a dual winding motor supplied from two separate vector-controlled voltage-sourced inverter drives. The windings are arranged in a way so as to form two independent and isolated sets. Simulation and experimental work will detail the driver’s performance during both healthy- and faulty- scenarios including short-circuit faults and will show the drive robustness to operate in these conditions. The work has been published in ten conference papers, two journal papers and a book chapter, presenting both the topology of the drive and the applied control schemes, as well as analysing the fault-tolerant capabilities of the drive.
    corecore