62,710 research outputs found

    Clustering analysis of railway driving missions with niching

    Get PDF
    A wide number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching genetic algorithm is presented, with the aim of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to three clustering benchmarks and to the classification of driving missions for railway applications

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Soft clustering analysis of galaxy morphologies: A worked example with SDSS

    Full text link
    Context: The huge and still rapidly growing amount of galaxies in modern sky surveys raises the need of an automated and objective classification method. Unsupervised learning algorithms are of particular interest, since they discover classes automatically. Aims: We briefly discuss the pitfalls of oversimplified classification methods and outline an alternative approach called "clustering analysis". Methods: We categorise different classification methods according to their capabilities. Based on this categorisation, we present a probabilistic classification algorithm that automatically detects the optimal classes preferred by the data. We explore the reliability of this algorithm in systematic tests. Using a small sample of bright galaxies from the SDSS, we demonstrate the performance of this algorithm in practice. We are able to disentangle the problems of classification and parametrisation of galaxy morphologies in this case. Results: We give physical arguments that a probabilistic classification scheme is necessary. The algorithm we present produces reasonable morphological classes and object-to-class assignments without any prior assumptions. Conclusions: There are sophisticated automated classification algorithms that meet all necessary requirements, but a lot of work is still needed on the interpretation of the results.Comment: 18 pages, 19 figures, 2 tables, submitted to A

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Improved approximation of arbitrary shapes in dem simulations with multi-spheres

    Get PDF
    DEM simulations are originally made for spherical particles only. But most of real particles are anything but not spherical. Due to this problem, the multi-sphere method was invented. It provides the possibility to clump several spheres together to create complex shape structures. The proposed algorithm oïŹ€ers a novel method to create multi-sphere clumps for the given arbitrary shapes. Especially the use of modern clustering algorithms, from the ïŹeld of computational intelligence, achieve satisfactory results. The clustering is embedded into an optimisation algorithm which uses a pre-deïŹned criterion. A mostly unaided algorithm with only a few input and hyperparameters is able to approximate arbitrary shapes
    • 

    corecore