328 research outputs found

    Optimal Burn-in Time and Imperfect Maintenance Strategy for a Warranted Product with Bathtub Shaped Failure Rate

    Get PDF
    ‘Burn-in/preventive maintenance’ programme is an efficient approach used to minimise the warranty servicing cost of a product with bathtub shaped failure rate. Burn-in is a widely used method to improve the quality of product during its ‘infant mortality’ period and preventive maintenance is a scheduled necessary activity carried out during its ‘wear-out’ period. In this paper, an optimisation model is developed to determine the optimal burn-in time and optimal imperfect preventive maintenance strategy that minimises the total mean servicing cost of a warranted product with an age-dependent repair cost. We provide a numerical study to illustrate our results

    Determination of optimal pricing and warranty policies

    Get PDF
    An important problem facing manufacturers in today\u27s competitive market is the determination of the selling price of a product and its warranty period. A longer warranty may serve as a signal of product reliability; however, it may also lead to an increase in cost and hence reduce the profit if the product reliability is low. A burn-in test may be used to improve the reliability of products prior to their shipment.;This research presented integrated models for maximizing the expected profit for products that are subjected to a burn-in test and sold with warranty. The burn-in time, warranty period, and price were chosen as three decision variables in these models. The price and warranty period were treated as marketing variables and a simple multiplicative form was used to model their effect on sales. Solution procedures were developed for several warranty policies. These procedures are applicable for any failure time distribution. Three failure time distributions were further investigated and formulas for optimal solutions were derived. Finally, two sets of data were used to illustrate the application of the models. Two computer programs were developed to solve the models both parametrically and nonparametically

    Reliability Analysis of Nanocrystal Embedded High-k Nonvolatile Memories

    Get PDF
    The evolution of the MOSFET technology has been driven by the aggressive shrinkage of the device size to improve the device performance and to increase the circuit density. Currently, many research demonstrated that the continuous polycrystalline silicon film in the floating-gate dielectric could be replaced with nanocrystal (nc) embedded high-k thin film to minimize the charge loss due to the defective thin tunnel dielectric layer. This research deals with both the statistical aspect of reliability and electrical aspect of reliability characterization as well. In this study, the Zr-doped HfO2 (ZrHfO) high-k MOS capacitors, which separately contain the nanocrystalline zinc oxide (nc-ZnO), silicon (nc-Si), Indium Tin Oxide (nc-ITO) and ruthenium (nc-Ru) are studied on their memory properties, charge transportation mechanism, ramp-relax test, accelerated life tests, failure rate estimation and thermal effect on the above reliability properties. C-V hysteresis result show that the amount of charges trapped in nanocrystal embedded films is in the order of nc-ZnO\u3enc-Ru\u3enc-Si~nc-ITO, which might probably be influenced by the EOT of each sample. In addition, all the results show that the nc-ZnO embedded ZrHfO non-volatile memory capacitor has the best memory property and reliability. In this study, the optimal burn-in time for this kind of device has been also investigated with nonparametric Bayesian analysis. The results show the optimal burn-in period for nc-ZnO embedded high-k device is 5470s with the maximum one-year mission reliability

    Joint Determination of Price and Upgrade Level for a Warranted Second-hand Product

    Get PDF
    An upgrade action is a pre-sale procedure that brings the second-hand item to an improved functional state and effectively reduces its age. This action is usually costly and adds directly to the sale price of the second-hand product, but it improves the product reliability and can reduce the warranty servicing cost. In the present paper, we propose a decision model to determine the optimal price and upgrade strategy of a warranted second-hand product to maximize the dealer's expected profit. The objective function includes both demand and cost functions, where purchase price from an end user, upgrade cost, and warranty cost are involved. We illustrate our finding using real data on second-hand electric device. Also, a sensitivity analysis is conducted to evaluate the effect of model parameters on the optimal solution

    Novel models and algorithms for systems reliability modeling and optimization

    Get PDF
    Recent growth in the scale and complexity of products and technologies in the defense and other industries is challenging product development, realization, and sustainment costs. Uncontrolled costs and routine budget overruns are causing all parties involved to seek lean product development processes and treatment of reliability, availability, and maintainability of the system as a true design parameter . To this effect, accurate estimation and management of the system reliability of a design during the earliest stages of new product development is not only critical for managing product development and manufacturing costs but also to control life cycle costs (LCC). In this regard, the overall objective of this research study is to develop an integrated framework for design for reliability (DFR) during upfront product development by treating reliability as a design parameter. The aim here is to develop the theory, methods, and tools necessary for: 1) accurate assessment of system reliability and availability and 2) optimization of the design to meet system reliability targets. In modeling the system reliability and availability, we aim to address the limitations of existing methods, in particular the Markov chains method and the Dynamic Bayesian Network approach, by incorporating a Continuous Time Bayesian Network framework for more effective modeling of sub-system/component interactions, dependencies, and various repair policies. We also propose a multi-object optimization scheme to aid the designer in obtaining optimal design(s) with respect to system reliability/availability targets and other system design requirements. In particular, the optimization scheme would entail optimal selection of sub-system and component alternatives. The theory, methods, and tools to be developed will be extensively tested and validated using simulation test-bed data and actual case studies from our industry partners

    Optimal Burn-In under Complex Failure Processes: Some New Perspectives

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modeling Preventive Maintenance in Complex Systems

    Get PDF
    This thesis presents an explicit consideration of the impacts of modeling decisions on the resulting maintenance planning. Incomplete data is common in maintenance planning, but is rarely considered explicitly. Robust optimization aims to minimize the impact of uncertainty--here, in contrast, I show how its impact can be explicitly quantified. Doing so allows decision makers to determine whether it is worthwhile to invest in reducing uncertainty about the system or the effect of maintenance. The thesis consists of two parts. Part I uses a case study to show how incomplete data arises and how the data can be used to derive models of a system. A case study based on the US Navy\u27s DDG-51 class of ships illustrates the approach. Analysis of maintenance effort and cost against time suggests that significant effort is expended on numerous small unscheduled maintenance tasks. Some of these corrective tasks are likely the result of deferring maintenance, and, ultimately decreasing the ship reliability. I use a series of graphical tests to identify the underlying failure characteristics of the ship class. The tests suggest that the class follows a renewal process, and can be modeled as a single unit, at least in terms of predicting system lifetime. Part II considers the impact of uncertainty and modeling decisions on preventive maintenance planning. I review the literature on multi-unit maintenance and provide a conceptual discussion of the impact of deferred maintenance on single and multi-unit systems. The single-unit assumption can be used without significant loss of accuracy when modeling preventive maintenance decisions, but leads to underestimating reliability and hence ultimately performance impacts in multi-unit systems. Next, I consider the two main approaches to modeling maintenance impact, Type I and Type II Kijima models and investigate the impact of maintenance level, maintenance interval, and system quality on system lifetime. I quantify the net present value obtained of the system under different maintenance strategies and show how modeling decisions and uncertainty affect how closely the actual system and maintenance policy approach the maximum net present value. Incorrect assumptions about the impact of maintenance on system aging have the most cost, while assumptions about design quality and maintenance level have significant but smaller impact. In these cases, it is generally better to underestimate quality, and to overestimate maintenance level

    Maximal reliability of controlled Markov systems

    Full text link
    This paper concentrates on the reliability of a discrete-time controlled Markov system with finite states and actions, and aims to give an efficient algorithm for obtaining an optimal (control) policy that makes the system have the maximal reliability for every initial state. After establishing the existence of an optimal policy, for the computation of optimal policies, we introduce the concept of an absorbing set of a stationary policy, and find some characterization and a computational method of the absorbing sets. Using the largest absorbing set, we build a novel optimality equation (OE), and prove the uniqueness of a solution of the OE. Furthermore, we provide a policy iteration algorithm of optimal policies, and prove that an optimal policy and the maximal reliability can be obtained in a finite number of iterations. Finally, an example in reliability and maintenance problems is given to illustrate our results

    PB-NTP-09

    Get PDF
    corecore