147 research outputs found

    Spatial Coordination Strategies in Future Ultra-Dense Wireless Networks

    Full text link
    Ultra network densification is considered a major trend in the evolution of cellular networks, due to its ability to bring the network closer to the user side and reuse resources to the maximum extent. In this paper we explore spatial resources coordination as a key empowering technology for next generation (5G) ultra-dense networks. We propose an optimization framework for flexibly associating system users with a densely deployed network of access nodes, opting for the exploitation of densification and the control of overhead signaling. Combined with spatial precoding processing strategies, we design network resources management strategies reflecting various features, namely local vs global channel state information knowledge exploitation, centralized vs distributed implementation, and non-cooperative vs joint multi-node data processing. We apply these strategies to future UDN setups, and explore the impact of critical network parameters, that is, the densification levels of users and access nodes as well as the power budget constraints, to users performance. We demonstrate that spatial resources coordination is a key factor for capitalizing on the gains of ultra dense network deployments.Comment: An extended version of a paper submitted to ISWCS'14, Special Session on Empowering Technologies of 5G Wireless Communication

    Multi-User Ultra-Massive MIMO for very high frequency bands (mmWave and THz): a resource allocation problem

    Get PDF
    A dynamic subarray allocation for multi-user massive MIMO systems working in very high frequency bands (mmWave and THz) is proposed as a promising technique to unleash the capacity limits in future cellular networks capable of supporting high consuming bandwidth applications

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Efficient Resource Allocation and Spectrum Utilisation in Licensed Shared Access Systems

    Get PDF

    Bat algorithm–based beamforming for mmWave massive MIMO systems

    Get PDF
    © 2019 John Wiley & Sons, Ltd. In this paper, an optimized analog beamforming scheme for millimeter-wave (mmWave) massive MIMO system is presented. This scheme aims to achieve the near-optimal performance.by searching for the optimized combination of analog precoder and combiner. In order to compensate for the occurrence of attenuation in the magnitude of mmWave signals, the codebook-dependent analog beamforming in conjunction with precoding at transmitting end and combining signals at the receiving end is utilized. Nonetheless, the existing and traditional beamforming schemes involve a more difficult and complicated search for the optimal combination of analog precoder/combiner matrices from predefined codebooks. To solve this problem, we have referred to a modified bat algorithm to find the optimal combination value. This algorithm will explore the possible pairs of analog precoder/combiner as a way to come up with the best match in order to attain near-optimal performance. The analysis shows that the optimized beamforming scheme presented in this paper can improve the performance that is very close to the beam steering benchmark that we have considered.Published versio

    Joint Design of Wireless Fronthaul and Access Links in Massive MIMO CRANs

    Get PDF
    Cloud radio access network (CRAN) has emerged as a promising mobile network architecture for the current 5th generation (5G) and beyond networks. This thesis focuses on novel architectures and optimization approaches for CRAN systems with massive multiple-input multiple-output (MIMO) enabled in the wireless fronthaul link. In particular, we propose a joint design of wireless fronthaul and access links for CRANs and aim to maximize the network spectral efficiency (SE) and energy efficiency (EE). Regarding downlink transmission in massive MIMO CRANs, the precoding designs of the access link are optimized by accounting for both perfect instantaneous channel state information (CSI) and stochastic CSI of the access link separately. The system design adopts a decompress-and-forward (DCF) scheme at the remote radio heads (RRHs), with optimization of the multivariate compression covariance noise. Constrained by the maximum power budgets set for the central unit (CU) and RRHs, we aim to maximize the network sum-rate and minimize the total transmit power for all user equipments (UEs). Moreover, we present a separate optimization design and compare its performance, feasibility, and computational efficiency with the proposed joint design. Considering the uplink transmission, we utilize a compress-and-forward (CF) scheme at the RRHs. Assuming that perfect CSI is available at the CU, our objective is to optimize the precoding matrix of the access link while adopting conventional precoding methods for the fronthaul link. This thesis also proposes an unmanned aerial vehicle (UAV)-enabled CRAN architecture with a massive MIMO CU as a supplement system to the terrestrial communication networks. The locations of UAVs are optimized along with compression noise, precoding matrices, and transmit power. To tackle the non-convex optimization problems described above, we employ efficient iterative algorithms and conduct a thorough exploration of practical simulations, yielding promising results that outperform benchmark schemes. In summary, this thesis explores future wireless CRAN architectures, leveraging promising technologies including massive MIMO and UAV-enabled communications. Furthermore, this work presents comprehensive optimization designs aimed at further enhancing the network efficiency

    Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming

    Full text link
    Hybrid beamforming is a promising technique to reduce the complexity and cost of massive multiple-input multiple-output (MIMO) systems while providing high data rate. However, the hybrid precoder design is a challenging task requiring channel state information (CSI) feedback and solving a complex optimization problem. This paper proposes a novel RSSI-based unsupervised deep learning method to design the hybrid beamforming in massive MIMO systems. Furthermore, we propose i) a method to design the synchronization signal (SS) in initial access (IA); and ii) a method to design the codebook for the analog precoder. We also evaluate the system performance through a realistic channel model in various scenarios. We show that the proposed method not only greatly increases the spectral efficiency especially in frequency-division duplex (FDD) communication by using partial CSI feedback, but also has near-optimal sum-rate and outperforms other state-of-the-art full-CSI solutions.Comment: Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore