2,358 research outputs found

    Scalable Coordinated Beamforming for Dense Wireless Cooperative Networks

    Full text link
    To meet the ever growing demand for both high throughput and uniform coverage in future wireless networks, dense network deployment will be ubiquitous, for which co- operation among the access points is critical. Considering the computational complexity of designing coordinated beamformers for dense networks, low-complexity and suboptimal precoding strategies are often adopted. However, it is not clear how much performance loss will be caused. To enable optimal coordinated beamforming, in this paper, we propose a framework to design a scalable beamforming algorithm based on the alternative direction method of multipliers (ADMM) method. Specifically, we first propose to apply the matrix stuffing technique to transform the original optimization problem to an equivalent ADMM-compliant problem, which is much more efficient than the widely-used modeling framework CVX. We will then propose to use the ADMM algorithm, a.k.a. the operator splitting method, to solve the transformed ADMM-compliant problem efficiently. In particular, the subproblems of the ADMM algorithm at each iteration can be solved with closed-forms and in parallel. Simulation results show that the proposed techniques can result in significant computational efficiency compared to the state- of-the-art interior-point solvers. Furthermore, the simulation results demonstrate that the optimal coordinated beamforming can significantly improve the system performance compared to sub-optimal zero forcing beamforming

    Dynamic Radio Cooperation for Downlink Cloud-RANs with Computing Resource Sharing

    Full text link
    A novel dynamic radio-cooperation strategy is proposed for Cloud Radio Access Networks (C-RANs) consisting of multiple Remote Radio Heads (RRHs) connected to a central Virtual Base Station (VBS) pool. In particular, the key capabilities of C-RANs in computing-resource sharing and real-time communication among the VBSs are leveraged to design a joint dynamic radio clustering and cooperative beamforming scheme that maximizes the downlink weighted sum-rate system utility (WSRSU). Due to the combinatorial nature of the radio clustering process and the non-convexity of the cooperative beamforming design, the underlying optimization problem is NP-hard, and is extremely difficult to solve for a large network. Our approach aims for a suboptimal solution by transforming the original problem into a Mixed-Integer Second-Order Cone Program (MI-SOCP), which can be solved efficiently using a proposed iterative algorithm. Numerical simulation results show that our low-complexity algorithm provides close-to-optimal performance in terms of WSRSU while significantly outperforming conventional radio clustering and beamforming schemes. Additionally, the results also demonstrate the significant improvement in computing-resource utilization of C-RANs over traditional RANs with distributed computing resources.Comment: 9 pages, 6 figures, accepted to IEEE MASS 201

    Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, there are scenarios where the secondary (lower priority) users intend to communicate with each other by opportunistically utilizing the transmit spectrum originally allocated to the existing primary (higher priority) users. For such a scenario, a secondary user usually has to trade off between two conflicting goals at the same time: one is to maximize its own transmit throughput; and the other is to minimize the amount of interference it produces at each primary receiver. In this paper, we study this fundamental tradeoff from an information-theoretic perspective by characterizing the secondary user's channel capacity under both its own transmit-power constraint as well as a set of interference-power constraints each imposed at one of the primary receivers. In particular, this paper exploits multi-antennas at the secondary transmitter to effectively balance between spatial multiplexing for the secondary transmission and interference avoidance at the primary receivers. Convex optimization techniques are used to design algorithms for the optimal secondary transmit spatial spectrum that achieves the capacity of the secondary transmission. Suboptimal solutions for ease of implementation are also presented and their performances are compared with the optimal solution. Furthermore, algorithms developed for the single-channel transmission are also extended to the case of multi-channel transmission whereby the secondary user is able to achieve opportunistic spectrum sharing via transmit adaptations not only in space, but in time and frequency domains as well.Comment: Extension of IEEE PIMRC 2007. 35 pages, 6 figures. Submitted to IEEE Journal of Special Topics in Signal Processing, special issue on Signal Processing and Networking for Dynamic Spectrum Acces

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin
    • …
    corecore