35,281 research outputs found

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation

    On surrogate loss functions and ff-divergences

    Full text link
    The goal of binary classification is to estimate a discriminant function γ\gamma from observations of covariate vectors and corresponding binary labels. We consider an elaboration of this problem in which the covariates are not available directly but are transformed by a dimensionality-reducing quantizer QQ. We present conditions on loss functions such that empirical risk minimization yields Bayes consistency when both the discriminant function and the quantizer are estimated. These conditions are stated in terms of a general correspondence between loss functions and a class of functionals known as Ali-Silvey or ff-divergence functionals. Whereas this correspondence was established by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951) 93--102. Univ. California Press, Berkeley] for the 0--1 loss, we extend the correspondence to the broader class of surrogate loss functions that play a key role in the general theory of Bayes consistency for binary classification. Our result makes it possible to pick out the (strict) subset of surrogate loss functions that yield Bayes consistency for joint estimation of the discriminant function and the quantizer.Comment: Published in at http://dx.doi.org/10.1214/08-AOS595 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Bayes-optimality of F-measure maximizers

    Get PDF
    The F-measure, which has originally been introduced in information retrieval, is nowadays routinely used as a performance metric for problems such as binary classification, multi-label classification, and structured output prediction. Optimizing this measure is a statistically and computationally challenging problem, since no closed-form solution exists. Adopting a decision-theoretic perspective, this article provides a formal and experimental analysis of different approaches for maximizing the F-measure. We start with a Bayes-risk analysis of related loss functions, such as Hamming loss and subset zero-one loss, showing that optimizing such losses as a surrogate of the F-measure leads to a high worst-case regret. Subsequently, we perform a similar type of analysis for F-measure maximizing algorithms, showing that such algorithms are approximate, while relying on additional assumptions regarding the statistical distribution of the binary response variables. Furthermore, we present a new algorithm which is not only computationally efficient but also Bayes-optimal, regardless of the underlying distribution. To this end, the algorithm requires only a quadratic (with respect to the number of binary responses) number of parameters of the joint distribution. We illustrate the practical performance of all analyzed methods by means of experiments with multi-label classification problems
    corecore