1,787 research outputs found

    A comparison of classification techniques for the P300 speller

    Get PDF
    International audienceThis study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for classifying offline data from eight users. The relative performance of the classifiers is evaluated, along with the practical concerns regarding the implementation of the respective methods. The results indicate that while all methods attained acceptable performance levels, SWLDA and FLD provide the best overall performance and implementation characteristics for practical classification of P300 Speller data

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms

    Decoding steady-state visual evoked potentials from electrocorticography

    Get PDF
    We report on a unique electrocorticography (ECoG) experiment in which Steady-State Visual Evoked Potentials (SSVEPs) to frequency-and phase-tagged stimuli were recorded from a large subdural grid covering the entire right occipital cortex of a human subject. The paradigm is popular in EEG-based Brain Computer Interfacing where selectable targets are encoded by different frequency-and/or phase-tagged stimuli. We compare the performance of two state-of-the-art SSVEP decoders on both ECoG-and scalp-recorded EEG signals, and show that ECoG-based decoding is more accurate for very short stimulation lengths (i.e., less than 1 s). Furthermore, whereas the accuracy of scalp-EEG decoding bene fi ts from a multi-electrode approach, to address interfering EEG responses and noise, ECoG decoding enjoys only a marginal improvement as even a single electrode, placed over the posterior part of the primary visual cortex, seems to suf fi ce. This study shows, for the fi rst time, that EEG-based SSVEP decoders can in principle be applied to ECoG, and can be expected to yield faster decoding speeds using less electrodes

    CES-531: Collaborative Brain-Computer Interfaces for Target Detection and Localisation in Rapid Serial Visual Presentation

    Get PDF
    The rapid serial visual presentation protocol can be used to show images sequentially on the same spatial location at high presentation rates. We used this technique to present aerial images to participants looking for predefined targets (airplanes) at rates ranging from 5 to 12 Hz. We used linear support vector machines for the single-trial classification of event-related potentials from both individual users and pairs of users (in which case we averaged either their individual classifiers' analogue outputs before thresholding or their electroencephalographic signals associated to the same stimuli) with and without the selection of compatible pairs. We considered two tasks - the detection of targets and the identification of the visual hemifield in which targets appeared. While single users did well in both tasks, we found that pairs of participants with similar individual performance provided significant improvements. In particular, in the target-detection task we obtained median improvements in the area under the receiver operating characteristic curve (AUC) of up to 8.3% w.r.t. single-user BCIs, while in the hemifield classification task we ob- tained AUCs up to 7.7% higher than for single users. Furthermore, we found that this second system allows not just to say if a target is in on the left or the right of an image, but to also recover the target's approximate horizontal position

    Use of the Choquet Integral for Combination of Classifiers in P300 Based Brain-Computer Interface

    Get PDF
    One of the key issues in the development of braincomputer interfaces (BCIs) is the improvement of their current information transfer rate. In order to achieve that objective at least two aspects of BCI design should be considered: classification accuracy and protocol specification. In this paper we show how combination of classifiers using fuzzy measures and the Choquet integral can be applied to the context of EEG-based BCI and study whether its use, together with an appropriate application protocol, can lead to an increase in the information transfer rate

    Kinesthesia in a sustained-attention driving task

    Full text link
    This study investigated the effects of kinesthetic stimuli on brain activities during a sustained-attention task in an immersive driving simulator. Tonic and phasic brain responses on multiple timescales were analyzed using time-frequency analysis of electroencephalographic (EEG) sources identified by independent component analysis (ICA). Sorting EEG spectra with respect to reaction times (RT) to randomly introduced lane-departure events revealed distinct effects of kinesthetic stimuli on the brain under different performance levels. Experimental results indicated that EEG spectral dynamics highly correlated with performance lapses when driving involved kinesthetic feedback. Furthermore, in the realistic environment involving both visual and kinesthetic feedback, a transitive relationship of power spectra between optimal-, suboptimal-, and poor-performance groups was found predominately across most of the independent components. In contrast to the static environment with visual input only, kinesthetic feedback reduced theta-power augmentation in the central and frontal components when preparing for action and error monitoring, while strengthening alpha suppression in the central component while steering the wheel. In terms of behavior, subjects tended to have a short response time to process unexpected events with the assistance of kinesthesia, yet only when their performance was optimal. Decrease in attentional demand, facilitated by kinesthetic feedback, eventually significantly increased the reaction time in the suboptimal-performance state. Neurophysiological evidence of mutual relationships between behavioral performance and neurocognition in complex task paradigms and experimental environments, presented in this study, might elucidate our understanding of distributed brain dynamics, supporting natural human cognition and complex coordinated, multi-joint naturalistic behavior, and lead to improved understanding of brain-behavior relations in operating environments. © 2014 Elsevier Inc

    Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent Time-Frequency Features

    Get PDF
    This paper considers the problem of automatic characterization and detection of target images in a rapid serial visual presentation (RSVP) task based on EEG data. A novel method that aims to identify single-trial event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier with feature clustering is developed to better utilize the correlated ERP features. The method is applied to EEG recordings of a RSVP experiment with multiple sessions and subjects. The results show that the target image events are mainly characterized by 3 distinct patterns in the time-frequency domain, i.e., a theta band (4.3 Hz) power boosting 300–700 ms after the target image onset, an alpha band (12 Hz) power boosting 500–1000 ms after the stimulus onset, and a delta band (2 Hz) power boosting after 500 ms. The most discriminant time-frequency features are power boosting and are relatively consistent among multiple sessions and subjects. Since the original discriminant time-frequency features are highly correlated, we constructed the uncorrelated features using hierarchical clustering for better classification of target and non-target images. With feature clustering, performance (area under ROC) improved from 0.85 to 0.89 on within-session tests, and from 0.76 to 0.84 on cross-subject tests. The constructed uncorrelated features were more robust than the original discriminant features and corresponded to a number of local regions on the time-frequency plane
    • …
    corecore