205 research outputs found

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newtonā€™s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision makerā€™s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision makerā€™s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    Further results on fractional order control of a mechatronic system

    Get PDF
    Ovaj rad predstavlja jedan novi algoritam PID upravljanja necelobrojnog reda zasnovani na genetskim algoritmima (GA) u zadatku pozicioniranja robotskog sistema sa tri stepena slobode pogonjen jednosmernim motorima. Urađena su optimalna podeÅ”avanja parametara FOPID kontrolera kao i IOPID kontrolera, primenom GA pristupa za date FOPID/IOPID kontrolere na uporedni način. Efektivnost predloženog optimalnog FOPID upravljanja je demonstrirano na datom robotskom sistemu kao jednim ilustrativnim primerom. Takođe, u preostalom delu rada prezentovano je projektovanje naprednog algoritma FOPID upravljanja podeÅ”avanog primenom GA i primena u upravljanju proizvodnjom tehničkih gasova, tj. kriogenog procesa separacije vazduha. Zatim je izvedeni model linearizovan i raspregnut i gde su zatim primenjeni IOPID i FOPID kontroleri. Na sličan način, skup optimalnih parametara datih kontrolera su dobijeni primenom GA optimizacione procedure minimizujući predloženi kriterijum optimalnosti. Konačno, koristeći rezultate simulacije u vremenskom domenu pokazano je da FOPID kontroler poboljÅ”ava odgovor sistema u prelaznom režimu i obezbeđuje viÅ”e robusnosti u poređenju sa klasičnim IOPID kontrolerom.This paper presents a new algorithm of the fractional order PID (FOPID) control based on genetic algorithms (GA) in the position control of a 3 DOF's robotic system driven by DC motors. The optimal settings for a FOPID controller as well as an integer order PID controller (IOPID) are done, applying the GA tuning approach and their extension for FOPID-IOPID controllers in a comparative manner. The effectiveness of the suggested optimal FOPID control is demonstrated with a given robotic system as an illustrative example. The rest of the paper presents the design of an advanced algorithm of the FOPID control tuned by GA and the application in the control of the production of technical gases, i.e. in the cryogenic air separation process. Then, the obtained model is linearized and decoupled and consequently IOPID and FOPID controllers are applied. In the same manner, a set of optimal parameters of these controllers is achieved through the GA optimization procedure through minimizing the proposed cost function. Finally, the use of the simulation results in the time domain has shown that the FOPID controller improves a transient response and provides more robustness than a conventional IOPID

    Fractional-Order PID Controllers for Temperature Control:A Review

    Get PDF
    Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications

    Optimization of Integer Order Integrators for Deriving Improved Models of Their Fractional Counterparts

    Get PDF

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    DE-based tuning of PIĪ»DĪ¼ controllers

    Get PDF
    A new method that relies on evolutionary computation concepts is proposed in this paper to tune the parameters of fractional order PIlambdaDmu controllers, in which the orders of the integral and derivative parts, lambda and mu, respectively, are fractional. The main advantage of the fractional order controllers is that the increase in the number of parameters in the controller allows an increase in the number of control specifications that can be met. A Differential Evolution (DE) algorithm is proposed to make the controlled system fulfill different design specifications in time and frequency domains. This method is based on the minimization of a fitness function. Experiments have been carried out in simulation and in a real DC motor platform. The results illustrate the effectiveness of this method.Publicad

    A novel switched model predictive control of wind turbines using artificial neural network-Markov chains prediction with load mitigation

    Get PDF
    The existing model predictive control algorithm based on continuous control using quadratic programming is currently one of the most used modern control strategies applied to wind turbines. However, heavy computational time involved and complexity in implementation are still obstructions in existing model predictive control algorithm. Owing to this, a new switched model predictive control technique is developed for the control of wind turbines with the ability to reduce complexity while maintaining better efficiency. The proposed technique combines model predictive control operating on finite control set and artificial intelligence with reinforcement techniques (Markov Chains, MC) to design a new effective control law which allows to achieve the control objectives in different wind speed zones with minimization of computational complexity. The proposed method is compared with the existing model predictive control algorithm, and it has been found that the proposed algorithm is better in terms of computational time, load mitigation, and dynamic response. The proposed research is a forward step towards refining modern control techniques to achieve optimization in nonlinear process control using novel hybrid structures based on conventional control laws and artificial intelligence.Ā© 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)fi=vertaisarvioitu|en=peerReviewed

    Performance Comparison of Several Control Algorithms for Tracking Control of Pantograph Mechanism

    Get PDF
    A sort of parallel manipulator known as a pantograph robot mechanism was created primarily for industrial requests that required high precision and satisfied speed. While tracking a chosen trajectory profile requires a powerful controller. Because it has four active robot links and one robot passive link in place of just two links like the open chain does, it can carry more loads than the open chain robot mechanism while maintaining accuracy and stability. The calculated model for a closed chain pantograph robot mechanism presented in this paper takes into account the boundary conditions. For the purpose of simulating the dynamics of the pantograph robot mechanism, an entire MATLAB Simulink has been created. The related Simscape model had been created to verify the pantograph mathematical model that had been provided. Five alternative tracking controllers were also created and improved using the Flower Pollination (FP) algorithm. The PID controller, which is used in many engineering applications, is the first control. An enriched Fractional Order PID (FOPID) controller is the second control. The third control considers an improved Nonlinear conventional PID (NLPID) controller, and the parameters for this controller were likewise determined using (FP) optimization using the useful objective function. Model Reference Adaptive Control (MRAC) with PID Compensator is the fourth control. The Fuzzy PD+I Control is the last and final controller. A comparison of the different control methods was completed. A rectangular trajectory was chosen as the end effector of the pantograph robot\u27s position reference because it displays performance during sharp edges and provides a more accurate study. The proposed controllers were used for this task to analyse the performance. The outcomes demonstrate that the Fuzzy PD+I control outperforms the PID, FOPID, NLPID, and MRAC with PID Compensator controllers in terms of performance. In the case of the Fuzzy PD+I control, the angles end effector has a lower rise time, a satisfied settling time, and low overshoot with good precision
    • ā€¦
    corecore