4,198 research outputs found

    Robust Power Allocation for Integrated Visible Light Positioning and Communication Networks

    Full text link
    Integrated visible light positioning and communication (VLPC), capable of combining advantages of visible light communications (VLC) and visible light positioning (VLP), is a promising key technology for the future Internet of Things. In VLPC networks, positioning and communications are inherently coupled, which has not been sufficiently explored in the literature. We propose a robust power allocation scheme for integrated VLPC Networks by exploiting the intrinsic relationship between positioning and communications. Specifically, we derive explicit relationships between random positioning errors, following both a Gaussian distribution and an arbitrary distribution, and channel state information errors. Then, we minimize the Cramer-Rao lower bound (CRLB) of positioning errors, subject to the rate outage constraint and the power constraints, which is a chance-constrained optimization problem and generally computationally intractable. To circumvent the nonconvex challenge, we conservatively transform the chance constraints to deterministic forms by using the Bernstein-type inequality and the conditional value-at-risk for the Gaussian and arbitrary distributed positioning errors, respectively, and then approximate them as convex semidefinite programs. Finally, simulation results verify the robustness and effectiveness of our proposed integrated VLPC design schemes.Comment: 13 pages, 15 figures, accepted by IEEE Transactions on Communication

    Anticipatory User-Association for Indoor Visible Light Communications: Light, Follow Me!

    Get PDF
    In this paper, a radically new anticipatory perspective is taken into account when designing the user-to-Access Point (AP) associations for indoor Visible Light Communications (VLC) networks, in the presence of users' mobility and wirelesstraffic dynamics. In its simplest guise, by considering the users' future locations and their predicted traffic dynamics, the novel anticipatory association prepares the APs for users in advance, resulting in an enhanced location- and delay-awareness. This is technically realised by our contrived design of an efficient approximate dynamic programming algorithm. More importantly, our study is in contrast to most of the current research in the area of indoor VLC networks, where static network environment was mainly considered. Hence, our study is able to draw insights on the performance trade-off between delay and throughput in dynamic indoor VLC networks. It is shown that the novel anticipatory design is capable of significantly outperforming the conventional benchmarking designs, striking an attractive performance trade-off between delay and throughput. Quantitatively, the average system queue backlog is reduced from 15 [ms] to 8 [ms], when comparing the design advocated to the conventional benchmark at the per-user throughput of 100 [Mbps], in a 15×15×5 [m 3 ] indoor environment associated with 8×8 APs and 20 users walking at 1 [m/s]

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Optical wireless communication based indoor positioning algorithms: performance optimisation and mathematical modelling

    Get PDF
    In this paper, the performance of the optimal beam radius indoor positioning (OBRIP) and two-receiver indoor positioning (TRIP) algorithms are analysed by varying system parameters in the presence of an indoor optical wireless channel modelled in line of sight configuration. From all the conducted simulations, the minimum average error value obtained for TRIP is 0.61 m against 0.81 m obtained for OBRIP for room dimensions of 10 m × 10 m × 3 m. In addition, for each simulated condition, TRIP, which uses two receivers, outperforms OBRIP and reduces position estimation error up to 30%. To get a better understanding of error in position estimation for different combinations of beam radius and separation between light emitting diodes, the 90th percentile error is determined using a cumulative distribution frequency (CDF) plot, which gives an error value of 0.94 m for TRIP as compared to 1.20 m obtained for OBRIP. Both algorithms also prove to be robust towards change in receiver tilting angle, thus providing flexibility in the selection of the parameters to adapt to any indoor environment. In addition, in this paper, a mathematical model based on the concept of raw moments is used to confirm the findings of the simulation results for the proposed algorithms. Using this mathematical model, closed-form expressions are derived for standard deviation of uniformly distributed points in an optical wireless communication based indoor positioning system with circular and rectangular beam shapes

    Lights and Shadows: A Comprehensive Survey on Cooperative and Precoding Schemes to Overcome LOS Blockage and Interference in Indoor VLC

    Get PDF
    Visible light communications (VLC) have received significant attention as a way of moving part of the saturated indoor wireless traffic to the wide and unregulated visible optical spectrum. Nowadays, VLC are considered as a suitable technology, for several applications such as high-rate data transmission, supporting internet of things communications or positioning. The signal processing originally derived from radio-frequency (RF) systems such as cooperative or precoding schemes can be applied to VLC. However, its implementation is not straightforward. Furthermore, unlike RF transmission, VLC present a predominant line-of-sight link, although a weak non-LoS component may appear due to the reflection of the light on walls, floor, ceiling and nearby objects. Blocking effects may compromise the performance of the aforementioned transmission schemes. There exist several surveys in the literature focused on VLC and its applications, but the management of the shadowing and interference in VLC requires a comprehensive study. To fill this gap, this work introduces the implementation of cooperative and precoding schemes to VLC, while remarking their benefits and drawbacks for overcoming the shadowing effects. After that, the combination of both cooperative and precoding schemes is analyzed as a way of providing resilient VLC networks. Finally, we propose several open issues that the cooperative and precoding schemes must face in order to provide satisfactory VLC performance in indoor scenarios.This work has been supported partially by Spanish National Project TERESA-ADA(TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE), the research project GEOVEOLUZ-CM-UC3Mfunded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D parajóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020” under the frame ofthe Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid and projectMadrid Flight on Chip (Innovation Cooperative Projects Comunidad of Madrid - HUBS 2018/MadridFlightOnChip). Additionally, it has been supported partially by the Juan de la CiervaIncorporación grant IJC2019-040317-I and Juan de la Cierva Formación grant (FJC2019-039541-I/AEI/10.13039/501100011033)
    corecore