248 research outputs found

    Solving Agreement Problems with Weak Ordering Oracles

    Get PDF
    Agreement problems, such as consensus, atomic broadcast, and group membership, are central to the implementation of fault-tolerant distributed systems. Despite the diversity of algorithms that have been proposed for solving agreement problems in the past years, almost all solutions are crash detection based (CDB). We say that an algorithm is CDB if it uses some information about the status crashed/not crashed of processes. Randomized consensus algorithms are rare exceptions non-CDB algorithms. In this paper, we revisit the issue of non-CDB algorithms. Instead of randomization, we consider ordering oracles. Ordering oracles have a theoretical interest (e.g., they extend the state of the art of non-CDB algorithms) as well as a practical interest (e.g., they remove altogether the burden involved in tuning timeout mechanisms). To illustrate their use, we present solutions to consensus and atomic broadcast, and evaluate the performance of the atomic broadcast algorithm in a cluster of workstations

    Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA

    Get PDF
    Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neuro-degeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neuro-degeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention

    Applications of Machine Learning in High-Frequency Trade Direction Classification

    Get PDF
    The correct assignment of trades as buyer-initiated or seller-initiated is paramount in many quantitative finance studies. Simple decision rule methods have been used for signing trades since many data sets available to researchers do not include the sign of each trade executed. By utilizing these decision rule methods, as well as engineering new variables from available data, we have demonstrated that machine learning models outperform prior methods for accurately signing trades as buys and sells, achieving state-of-the-art results. The best model developed was 4.5 percentage points more accurate than older methods when predicting onto unseen data. Since finance and economics departments pay thousands of dollars in annual data service subscriptions they are often reluctant to fund purchase of additional data containing trade signs when methods for predicting these signs exist. The use of our best trade signing model as an alternative to the purchase of additional data has the potential to collectively save universities millions of dollars in additional subscription fees, facilitate more reliable research, and lighten the burden of data processing for researchers

    Backpressure based traffic signal control considering capacity of downstream links

    Get PDF
    Congestion is a kind of expression of instability of traffic network. Traffic signal control keeping traffic network stable can reduce the congestion of urban traffic. In order to improve the efficiency of urban traffic network, this study proposes a decentralized traffic signal control strategy based on backpressure algorithm used in Wi-Fi mesh networks for packets routing. Backpressure based traffic signal control algorithm can stabilize urban traffic network and achieve maximum throughput. Based on original backpressure algorithm, the variant parameter and penalty function are considered to balance the queue differential and capacity of downstream links in urban traffic network. For each traffic phase of intersections, phase weight is computed using queue differential and capacity of downstream links, which fixed the deficiency of infinite queue capacity in original backpressure algorithm. It is proved that the extended backpressure traffic signal control algorithm can maintain stability of urban traffic network, and also can prevent queue spillback, so as to improve performance of whole traffic network. Simulations are carried out in Vissim using Vissim COM programming interface and Visual Studio development tools. Evaluation results illuminate that it can get better performance than the backpressure algorithm just based on queue length differential in average queue length and delay of traffic network

    Galaxy alignments: Observations and impact on cosmology

    Full text link
    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.Comment: 52 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers arXiv:1504.05456 and arXiv:1504.0554
    • …
    corecore