231 research outputs found

    Theory and design of portable parallel programs for heterogeneous computing systems and networks

    Get PDF
    A recurring problem with high-performance computing is that advanced architectures generally achieve only a small fraction of their peak performance on many portions of real applications sets. The Amdahl\u27s law corollary of this is that such architectures often spend most of their time on tasks (codes/algorithms and the data sets upon which they operate) for which they are unsuited. Heterogeneous Computing (HC) is needed in the mid 90\u27s and beyond due to ever increasing super-speed requirements and the number of projects with these requirements. HC is defined as a special form of parallel and distributed computing that performs computations using a single autonomous computer operating in both SIMD and MIMD modes, or using a number of connected autonomous computers. Physical implementation of a heterogeneous network or system is currently possible due to the existing technological advances in networking and supercomputing. Unfortunately, software solutions for heterogeneous computing are still in their infancy. Theoretical models, software tools, and intelligent resource-management schemes need to be developed to support heterogeneous computing efficiently. In this thesis, we present a heterogeneous model of computation which encapsulates all the essential parameters for designing efficient software and hardware for HC. We also study a portable parallel programming tool, called Cluster-M, which implements this model. Furthermore, we study and analyze the hardware and software requirements of HC and show that, Cluster-M satisfies the requirements of HC environments

    Group implicit concurrent algorithms in nonlinear structural dynamics

    Get PDF
    During the 70's and 80's, considerable effort was devoted to developing efficient and reliable time stepping procedures for transient structural analysis. Mathematically, the equations governing this type of problems are generally stiff, i.e., they exhibit a wide spectrum in the linear range. The algorithms best suited to this type of applications are those which accurately integrate the low frequency content of the response without necessitating the resolution of the high frequency modes. This means that the algorithms must be unconditionally stable, which in turn rules out explicit integration. The most exciting possibility in the algorithms development area in recent years has been the advent of parallel computers with multiprocessing capabilities. So, this work is mainly concerned with the development of parallel algorithms in the area of structural dynamics. A primary objective is to devise unconditionally stable and accurate time stepping procedures which lend themselves to an efficient implementation in concurrent machines. Some features of the new computer architecture are summarized. A brief survey of current efforts in the area is presented. A new class of concurrent procedures, or Group Implicit algorithms is introduced and analyzed. The numerical simulation shows that GI algorithms hold considerable promise for application in coarse grain as well as medium grain parallel computers

    Mapping of portable parallel programs

    Get PDF
    An efficient parallel program designed for a parallel architecture includes a detailed outline of accurate assignments of concurrent computations onto processors, and data transfers onto communication links, such that the overall execution time is minimized. This process may be complex depending on the application task and the target multiprocessor architecture. Furthermore, this process is to be repeated for every different architecture even though the application task may be the same. Consequently, this has a major impact on the ever increasing cost of software development for multiprocessor systems. A remedy for this problem would be to design portable parallel programs which can be mapped efficiently onto any computer system. In this dissertation, we present a portable programming tool called Cluster-M. The three components of Cluster-M are the Specification Module, the Representation Module, and the Mapping Module. In the Specification Module, for a given problem, a machine-independent program is generated and represented in the form of a clustered task graph called Spec graph. Similarly, in the Representation Module, for a given architecture or heterogeneous suite of computers, a clustered system graph called Rep graph is generated. The Mapping Module is responsible for efficient mapping of Spec graphs onto Rep graphs. As part of this module, we present the first algorithm which produces a near-optimal mapping of an arbitrary non-uniform machine-independent task graph with M modules, onto an arbitrary non-uniform task-independent system graph having N processors, in 0(M P) time, where P = max(M, N). Our experimental results indicate that Cluster-M produces better or similar mapping results compared to other leading techniques which work only for restricted task or system graphs

    Compiling global name-space programs for distributed execution

    Get PDF
    Distributed memory machines do not provide hardware support for a global address space. Thus programmers are forced to partition the data across the memories of the architecture and use explicit message passing to communicate data between processors. The compiler support required to allow programmers to express their algorithms using a global name-space is examined. A general method is presented for analysis of a high level source program and along with its translation to a set of independently executing tasks communicating via messages. If the compiler has enough information, this translation can be carried out at compile-time. Otherwise run-time code is generated to implement the required data movement. The analysis required in both situations is described and the performance of the generated code on the Intel iPSC/2 is presented
    • …
    corecore