284 research outputs found

    Matrix representations for toric parametrizations

    Get PDF
    In this paper we show that a surface in P^3 parametrized over a 2-dimensional toric variety T can be represented by a matrix of linear syzygies if the base points are finite in number and form locally a complete intersection. This constitutes a direct generalization of the corresponding result over P^2 established in [BJ03] and [BC05]. Exploiting the sparse structure of the parametrization, we obtain significantly smaller matrices than in the homogeneous case and the method becomes applicable to parametrizations for which it previously failed. We also treat the important case T = P^1 x P^1 in detail and give numerous examples.Comment: 20 page

    Topology of 2D and 3D Rational Curves

    Full text link
    In this paper we present algorithms for computing the topology of planar and space rational curves defined by a parametrization. The algorithms given here work directly with the parametrization of the curve, and do not require to compute or use the implicit equation of the curve (in the case of planar curves) or of any projection (in the case of space curves). Moreover, these algorithms have been implemented in Maple; the examples considered and the timings obtained show good performance skills.Comment: 26 pages, 19 figure

    Symmetry Detection of Rational Space Curves from their Curvature and Torsion

    Full text link
    We present a novel, deterministic, and efficient method to detect whether a given rational space curve is symmetric. By using well-known differential invariants of space curves, namely the curvature and torsion, the method is significantly faster, simpler, and more general than an earlier method addressing a similar problem. To support this claim, we present an analysis of the arithmetic complexity of the algorithm and timings from an implementation in Sage.Comment: 25 page

    Variational Approach to Differential Invariants of Rank 2 Vector Distributions

    Get PDF
    In the present paper we construct differential invariants for generic rank 2 vector distributions on n-dimensional manifold. In the case n=5 (the first case containing functional parameters) E. Cartan found in 1910 the covariant fourth-order tensor invariant for such distributions, using his "reduction-prolongation" procedure. After Cartan's work the following questions remained open: first the geometric reason for existence of Cartan's tensor was not clear; secondly it was not clear how to generalize this tensor to other classes of distributions; finally there were no explicit formulas for computation of Cartan's tensor. Our paper is the first in the series of papers, where we develop an alternative approach, which gives the answers to the questions mentioned above. It is based on the investigation of dynamics of the field of so-called abnormal extremals (singular curves) of rank 2 distribution and on the general theory of unparametrized curves in the Lagrange Grassmannian, developed in our previous works with A. Agrachev . In this way we construct the fundamental form and the projective Ricci curvature of rank 2 vector distributions for arbitrary n greater than 4. For n=5 we give an explicit method for computation of these invariants and demonstrate it on several examples. In our next paper we show that in the case n=5 our fundamental form coincides with Cartan's tensor.Comment: 37 pages, SISSA preprint, 12/2004/M, February 2004, minor corrections of misprint

    On the problem of proper reparametrization for rational curves and surfaces

    Get PDF
    A rational parametrization of an algebraic curve (resp. surface) establishes a rational correspondence of this curve (resp. surface) with the affine or projective line (resp. affine or projective plane). This correspondence is a birational equivalence if the parametrization is proper. So, intuitively speaking, a rational proper parametrization trace the curve or surface once. We consider the problem of computing a proper rational parametrization from a given improper one. For the case of curves we generalize, improve and reinterpret some previous results. For surfaces, we solve the problem for some special surface's parametrizations

    Computing Hypercircles by Moving Hyperplanes

    Get PDF
    Let K be a field of characteristic zero, alpha algebraic of degree n over K. Given a proper parametrization psi of a rational curve C, we present a new algorithm to compute the hypercircle associated to the parametrization psi. As a consequence, we can decide if the curve C is defined over K and, if not, to compute the minimum field of definition of C containing K. The algorithm exploits the conjugate curves of C but avoids computation in the normal closure of K(alpha) over K.Comment: 16 page

    A partial solution to the problem of proper reparametrization for rational surfaces

    Get PDF
    Given an algebraically closed field K, and a rational parametrization P of an algebraic surface V ⊂ K3 , we consider the problem of computing a proper rational parametrization Q from P (reparametrization problem). More precisely, we present an algorithm that computes a rational parametrization Q of V such that the degree of the rational map induced by Q is less than the degree induced by P. The properness of the output parametrization Q is analyzed. In particular, if the degree of the map induced by Q is one, then Q is proper and the reparametrization problem is solved. The algorithm works if at least one of two auxiliary parametrizations defined from P is not proper
    • …
    corecore