1,687 research outputs found

    Abstraction in directed model checking

    Get PDF
    Abstraction is one of the most important issues to cope with large and infinite state spaces in model checking and to reduce the verification efforts. The abstract system is smaller than the original one and if the abstract system satisfies a correctness specification, so does the concrete one. However, abstractions may introduce a behavior violating the specification that is not present in the original system. This paper bypasses this problem by proposing the combination of abstraction with heuristic search to improve error detection. The abstract system is explored in order to create a database that stores the exact distances from abstract states to the set of abstract error states. To check, whether or not the abstract behavior is present in the original system, effcient exploration algorithms exploit the database as a guidance

    Action planning for graph transition systems

    Get PDF
    Graphs are suitable modeling formalisms for software and hardware systems involving aspects such as communication, object orientation, concurrency, mobility and distribution. State spaces of such systems can be represented by graph transition systems, which are basically transition systems whose states and transitions represent graphs and graph morphisms. In this paper, we propose the modeling of graph transition systems in PDDL and the application of heuristic search planning for their analysis. We consider different heuristics and present experimental results

    Lagrangian Decomposition for Classical Planning (Extended Abstract)

    Get PDF
    Optimal cost partitioning of classical planning heuristics has been shown to lead to excellent heuristic values but is often prohibitively expensive to compute. We analyze the application of Lagrangian decomposition, a classical tool in mathematical programming, to cost partitioning of operator-counting heuristics. This allows us to view the computation as an iterative process that can be seeded with any cost partitioning and that improves over time. In the case of non-negative cost partitioning of abstraction heuristics the computation reduces to independent shortest path problems and does not require an LP solver

    Abstraction Heuristics, Cost Partitioning and Network Flows

    Get PDF
    Cost partitioning is a well-known technique to make admissible heuristics for classical planning additive. The optimal cost partitioning of explicit-state abstraction heuristics can be computed in polynomial time with a linear program, but the size of the model is often prohibitive. We study this model from a dual perspective and develop several simplification rules to reduce its size. We use these rules to answer open questions about extensions of the state equation heuristic and their relation to cost partitioning

    Subset-Saturated Cost Partitioning for Optimal Classical Planning

    Get PDF
    Cost partitioning is a method for admissibly adding multiple heuristics for state-space search. Saturated cost partitioning considers the given heuristics in sequence, assigning to each heuristic the minimum fraction of remaining costs that it needs to preserve its estimates for all states. We generalize saturated cost partitioning by allowing to preserve the heuristic values of only a subset of states and show that this often leads to stronger heuristics

    Integrated product relationships management : a model to enable concurrent product design and assembly sequence planning

    Get PDF
    The paper describes a novel approach to product relationships management in the context of concurrent engineering and product lifecycle management (PLM). Current industrial practices in product data management and manufacturing process management systems require better efficiency, flexibility, and sensitivity in managing product information at various levels of abstraction throughout its lifecycle. The aim of the proposed work is to manage vital yet complex and inherent product relationship information to enable concurrent product design and assembly sequence planning. Indeed, the definition of the product with its assembly sequence requires the management and the understanding of the numerous product relationships, ensuring consistency between the product and its components. This main objective stresses the relational design paradigm by focusing on product relationships along its lifecycle. This paper gives the detailed description of the background and models which highlight the need for a more efficient PLM approach. The proposed theoretical approach is then described in detail. A separate paper will focus on the implementation of the proposed approach in a PLM-based application, and an in-depth case study to evaluate the implementation of the novel approach will also be given

    State-dependent Cost Partitionings for Cartesian Abstractions in Classical Planning

    Get PDF
    Abstraction heuristics are a popular method to guide optimal search algorithms in classical planning. Cost partitionings allow to sum heuristic estimates admissibly by distributing action costs among the heuristics. We introduce state-dependent cost partitionings which take context information of actions into account, and show that an optimal state-dependent cost partitioning dominates its state-independent counterpart. We demonstrate the potential of our idea with a state-dependent variant of the recently proposed saturated cost partitioning, and show that it has the potential to improve not only over its state-independent counterpart, but even over the optimal state-independent cost partitioning. Our empirical results give evidence that ignoring the context of actions in the computation of a cost partitioning leads to a significant loss of information

    A Theory of Merge-and-Shrink for Stochastic Shortest Path Problems

    Get PDF
    The merge-and-shrink framework is a powerful tool to construct state space abstractions based on factored representations. One of its core applications in classical planning is the construction of admissible abstraction heuristics. In this paper, we develop a compositional theory of merge-and-shrink in the context of probabilistic planning, focusing on stochastic shortest path problems (SSPs). As the basis for this development, we contribute a novel factored state space model for SSPs. We show how general transformations, including abstractions, can be formulated on this model to derive admissible and/or perfect heuristics. To formalize the merge-and-shrink framework for SSPs, we transfer the fundamental merge-and-shrink transformations from the classical setting: shrinking, merging, and label reduction. We analyze the formal properties of these transformations in detail and show how the conditions under which shrinking and label reduction lead to perfect heuristics can be extended to the SSP setting
    • 

    corecore