864 research outputs found

    Joint Data compression and Computation offloading in Hierarchical Fog-Cloud Systems

    Get PDF
    Data compression has the potential to significantly improve the computation offloading performance in hierarchical fog-cloud systems. However, it remains unknown how to optimally determine the compression ratio jointly with the computation offloading decisions and the resource allocation. This joint optimization problem is studied in the current paper where we aim to minimize the maximum weighted energy and service delay cost (WEDC) of all users. First, we consider a scenario where data compression is performed only at the mobile users. We prove that the optimal offloading decisions have a threshold structure. Moreover, a novel three-step approach employing convexification techniques is developed to optimize the compression ratios and the resource allocation. Then, we address the more general design where data compression is performed at both the mobile users and the fog server. We propose three efficient algorithms to overcome the strong coupling between the offloading decisions and resource allocation. We show that the proposed optimal algorithm for data compression at only the mobile users can reduce the WEDC by a few hundred percent compared to computation offloading strategies that do not leverage data compression or use sub-optimal optimization approaches. Besides, the proposed algorithms for additional data compression at the fog server can further reduce the WEDC

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    A Proposed Scheduling Algorithm for IoT Applications in a Merged Environment of Edge, Fog, and Cloud

    Get PDF
    With the rapid increase of Internet of Things (IoT) devices and applications, the ordinary cloud computing paradigm soon becomes outdated. Fog computing paradigm extends services provided by a cloud to the edge of network in order to satisfy requirements of IoT applications such as low latency, locality awareness, low network traffic, mobility support, and so forth. Task scheduling in a Cloud-Fog environment plays a great role to assure diverse computational demands are met. However, the quest for an optimal solution for task scheduling in the such environment is exceedingly hard due to diversity of IoT applications, heterogeneity of computational resources, and multiple criteria. This study approaches the task scheduling problem with aims at improving service quality and load balancing in a merged computing system of Edge-Fog-Cloud. We propose a Multi-Objective Scheduling Algorithm (MOSA) that takes into account the job characteristics and utilization of different computational resources. The proposed solution is evaluated in comparison to other existing policies named LB, WRR, and MPSO. Numerical results show that the proposed algorithm improves the average response time while maintaining load balancing in comparison to three existing policies. Obtained results with the use of real workloads validate the outcomes
    • …
    corecore