1,603 research outputs found

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Broadcast in sparse conversion optical networks using fewest converters

    Get PDF
    Wavelengths and converters are shared by communication requests in optical networks. When a message goes through a node without a converter, the outgoing wavelength must be the same as the incoming one. This constraint can be removed if the node uses a converter. Hence, the usage of converters increases the utilization of wavelengths and allows more communication requests to succeed. Since converters are expensive, we consider sparse conversion networks, where only some specified nodes have converters. Moreover, since the usage of converters induces delays, we should minimize the use of available converters. The Converters Usage Problem (CUP) is to use a minimum number of converter so that each node can send messages to all the others (broadcasting). In this dissertation, we study the CUP in sparse conversion networks. We design a linear algorithm to find a wavelength assignment in tree networks such that, with the usage of a minimum number of available converters, every node can send messages to all the others. This is a generalization of [35], where each node has a converter. Our algorithm can assign wavelengths efficiently and effectively for one-to-one, multicast, and broadcast communication requests. A converter wavelength-dominates a node if there is a uniform wavelength path between them. The Minimal Wavelength Dominating Set Problem (MWDSP) is to locate a minimum number of converters so that all the other nodes in the network are wavelength-dominated. We use a linear complexity dynamic programming algorithm to solve the MWDSP for networks with bounded treewidth. One such solution provides a low bound for the optimal solution to the CUP

    Resource Allocation Schemes And Performance Evaluation Models For Wavelength Division Multiplexed Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in network infrastructure and next-generation Internet architectures. WDM networks have the potential to provide unprecedented bandwidth, reduce processing cost, achieve protocol transparency, and enable efficient failure handling. This dissertation addresses the important issues of improving the performance and enhancing the reliability of WDM networks as well as modeling and evaluating the performance of these networks. Optical wavelength conversion is one of the emerging WDM enabling technologies that can significantly improve bandwidth utilization in optical networks. A new approach for the sparse placement of full wavelength converters based on the concept of the k-Dominating Set (k-DS) of a graph is presented. The k-DS approach is also extended to the case of limited conversion capability using three scalable and cost-effective switch designs: flexible node-sharing, strict node-sharing and static mapping. Compared to full search algorithms previously proposed in the literature, the K-DS approach has better blocking performance, has better time complexity and avoids the local minimum problem. The performance benefit of the K-DS approach is demonstrated by extensive simulation. Fiber delay line (FDL) is another emerging WDM technology that can be used to obtain limited optical buffering capability. A placement algorithm, k-WDS, for the sparse placement of FDLs at a set of selected nodes in Optical Burst Switching (OBS) networks is proposed. The algorithm can handle both uniform and non-uniform traffic patterns. Extensive performance tests have shown that k-WDS provides more efficient placement of optical fiber delay lines than the well-known approach of placing the resources at nodes with the highest experienced burst loss. Performance results that compare the benefit of using FDLs versus using optical wavelength converters (OWCs) are presented. A new algorithm, A-WDS, for the placement of an arbitrary numbers of FDLs and OWCs is introduced and is evaluated under different non-uniform traffic loads. This dissertation also introduces a new cost-effective optical switch design using FDL and a QoS-enhanced JET (just enough time) protocol suitable for optical burst switched WDM networks. The enhanced JET protocol allows classes of traffic to benefit from FDLs and OWCs while minimizing the end-to-end delay for high priority bursts. Performance evaluation models of WDM networks represent an important research area that has received increased attention. A new analytical model that captures link dependencies in all-optical WDM networks under uniform traffic is presented. The model enables the estimation of connection blocking probabilities more accurately than previously possible. The basic formula of the dependency between two links in this model reflects their degree of adjacency, the degree of connectivity of the nodes composing them and their carried traffic. The usefulness of the model is illustrated by applying it to the sparse wavelength converters placement problem in WDM networks. A lightpath containing converters is divided into smaller sub-paths such that each sub-path is a wavelength continuous path and the nodes shared between these sub-paths are full wavelength conversion capable. The blocking probability of the entire path is obtained by computing the blocking probabilities of the individual sub-paths. The analytical-based sparse placement algorithm is validated by comparing it with its simulation-based counterpart using a number of network topologies. Rapid recovery from failure and high levels of reliability are extremely important in WDM networks. A new Fault Tolerant Path Protection scheme, FTPP, for WDM mesh networks based on the alarming state of network nodes and links is introduced. The results of extensive simulation tests show that FTPP outperforms known path protection schemes in terms of loss of service ratio and network throughput. The simulation tests used a wide range of values for the load intensity, the failure arrival rate and the failure holding time. The FTPP scheme is next extended to the differentiated services model and its connection blocking performance is evaluated. Finally, a QoS-enhanced FTPP (QEFTPP) routing and path protection scheme in WDM networks is presented. QEFTPP uses preemption to minimize the connection blocking percentage for high priority traffic. Extensive simulation results have shown that QEFTPP achieves a clear QoS differentiation among the traffic classes and provides a good overall network performance

    A tabu search algorithm for sparse placement of wavelength converting nodes in optical networks

    Get PDF
    Cataloged from PDF version of article.All-optical Wavelength Division Multiplexing networks, providing extremely large bandwidths, are among the most promising solutions for the increasing need for high-speed data transport. In all-optical networks, data is transmitted solely in the optical domain along lightpaths from source to destination without being converted into the electronic form, and each lightpath is restricted to use the same wavelength on all the links along its path. This restriction is known as the wavelength continuity constraint. Optical wavelength conversion can increase the performance and capacity of optical networks by removing this restriction and relaxing the wavelength continuity constraint. However, optical wavelength conversion is a difficult and expensive technology. In this study, we analyze the problem of placing limited number of wavelength converting nodes in a multi- fiber network with static traffic demands. Optimum placement of wavelength converting nodes is an NP-complete problem. We propose a tabu search based heuristic algorithm for this problem. The objective of the algorithm is to achieve the performance of full wavelength conversion in terms of minimizing the total number of fibers used in the network by placing minimum number of wavelength converting nodes. Numerical results comparing the performance of the algorithm with the optimum solutions are presented. The proposed algorithm gives quite satisfactory results, it also has a relatively low computational complexity making it applicable to large scale networks.Şengezer, NamıkM.S

    Optical Networks and Interconnects

    Full text link
    The rapid evolution of communication technologies such as 5G and beyond, rely on optical networks to support the challenging and ambitious requirements that include both capacity and reliability. This chapter begins by giving an overview of the evolution of optical access networks, focusing on Passive Optical Networks (PONs). The development of the different PON standards and requirements aiming at longer reach, higher client count and delivered bandwidth are presented. PON virtualization is also introduced as the flexibility enabler. Triggered by the increase of bandwidth supported by access and aggregation network segments, core networks have also evolved, as presented in the second part of the chapter. Scaling the physical infrastructure requires high investment and hence, operators are considering alternatives to optimize the use of the existing capacity. This chapter introduces different planning problems such as Routing and Spectrum Assignment problems, placement problems for regenerators and wavelength converters, and how to offer resilience to different failures. An overview of control and management is also provided. Moreover, motivated by the increasing importance of data storage and data processing, this chapter also addresses different aspects of optical data center interconnects. Data centers have become critical infrastructure to operate any service. They are also forced to take advantage of optical technology in order to keep up with the growing capacity demand and power consumption. This chapter gives an overview of different optical data center network architectures as well as some expected directions to improve the resource utilization and increase the network capacity

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    Investigation of the tolerance of wavelength-routed optical networks to traffic load variations.

    Get PDF
    This thesis focuses on the performance of circuit-switched wavelength-routed optical network with unpredictable traffic pattern variations. This characteristic of optical networks is termed traffic forecast tolerance. First, the increasing volume and heterogeneous nature of data and voice traffic is discussed. The challenges in designing robust optical networks to handle unpredictable traffic statistics are described. Other work relating to the same research issues are discussed. A general methodology to quantify the traffic forecast tolerance of optical networks is presented. A traffic model is proposed to simulate dynamic, non-uniform loads, and used to test wavelength-routed optical networks considering numerous network topologies. The number of wavelengths required and the effect of the routing and wavelength allocation algorithm are investigated. A new method of quantifying the network tolerance is proposed, based on the calculation of the increase in the standard deviation of the blocking probabilities with increasing traffic load non-uniformity. The performance of different networks are calculated and compared. The relationship between physical features of the network topology and traffic forecast tolerance is investigated. A large number of randomly connected networks with different sizes were assessed. It is shown that the average lightpath length and the number of wavelengths required for full interconnection of the nodes in static operation both exhibit a strong correlation with the network tolerance, regardless of the degree of load non-uniformity. Finally, the impact of wavelength conversion on network tolerance is investigated. Wavelength conversion significantly increases the robustness of optical networks to unpredictable traffic variations. In particular, two sparse wavelength conversion schemes are compared and discussed: distributed wavelength conversion and localized wavelength conversion. It is found that the distributed wavelength conversion scheme outperforms localized wavelength conversion scheme, both with uniform loading and in terms of the network tolerance. The results described in this thesis can be used for the analysis and design of reliable WDM optical networks that are robust to future traffic demand variations
    • …
    corecore